\documentclass{beamer}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{helvet}
\usepackage{listings}
\usepackage{mathabx}
\usepackage{mathpazo}
\usepackage{amsmath}
\usepackage{eulervm}
\usepackage{multicol}
\usepackage{ragged2e}
\usepackage{changepage}
\usepackage[export]{adjustbox}
\usepackage{harpoon}
\newcommand*{\vect}[1]{\overrightharp{\ensuremath{#1}}}
\usepackage[sorting=none]{biblatex}
\addbibresource{bibliography.bib}
\renewcommand*{\bibfont}{\normalfont\small}
\usepackage[export]{adjustbox}
\usetheme{l2ep} %load the custom theme only when in the same folder
\title{\LARGE{\textbf{ Laboratoire d'Électrotechnique et d'Électronique de Puissance de Lille }}}
\date[ISPN ’80]{2023}
\author[Euclid]{author1, author2, author3, author4}
\begin{document}
\begin{frame}[plain]
\titlepage
\end{frame}
%frame numbering starts after title frame
\addtobeamertemplate{navigation symbols}{}{%
\usebeamerfont{headline}%
\usebeamercolor[black]{headline}%
\hspace{2mm}%
\vspace{105mm}%
\insertframenumber
}
\section{section1}
\begin{frame}
\frametitle{Frame title 1}
\framesubtitle{L2EP 2023}
\begin{theorem}
There is no largest prime number.
\end{theorem}
\begin{enumerate}
\item<1-| alert@1> Suppose $p$ were the largest prime number.
\item<2-> Let $q$ be the product of the first $p$ numbers.
\item<3-> Then $q+1$ is not divisible by any of them.
\item<1-> But $q + 1$ is greater than $1$, thus divisible by some prime number not in the first $p$ numbers.
\end{enumerate}
\end{frame}
\section{section2}
\begin{frame}
\frametitle{Frame title 2}
\framesubtitle{Frame subtitle 2}
\begin{itemize}
\item one
\item two
\end{itemize}
\end{frame}
\section{section3}
\begin{frame}
\frametitle{Conclusion}
\cite{JA,GB,Steinmetz}
\end{frame}
\printbibliography
\end{document}