%
% Presentation example
% Tibault Reveyrand - http://www.microwave.fr
%
% http://www.microwave.fr/LaTeX.html
% ---------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% beamer %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% To run - pdflatex filename.tex
%	   acroread filename.pdf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\documentclass[compress,brown]{beamer}
\documentclass[compress,brown]{beamer}
\usepackage{etex}
\mode<presentation>
\usetheme{Warsaw} %Warsaw
% other themes: AnnArbor, Antibes, Bergen, Berkeley, Berlin, Boadilla, boxes, CambridgeUS, Copenhagen, Darmstadt, default, Dresden, Frankfurt, Goettingen,
% Hannover, Ilmenau, JuanLesPins, Luebeck, Madrid, Maloe, Marburg, Montpellier, PaloAlto, Pittsburg, Rochester, Singapore, Szeged, classic
%\usecolortheme{lily}
% color themes: albatross, beaver, beetle, crane, default, dolphin, dov, fly, lily, orchid, rose, seagull, seahorse, sidebartab, structure, whale, wolverine
%\usefonttheme{serif}
% font themes: default, professionalfonts, serif, structurebold, structureitalicserif, structuresmallcapsserif
\hypersetup{pdfpagemode=FullScreen} % makes your presentation go automatically to full screen
% define your own colors:
\definecolor{Red}{rgb}{1,0,0}
\definecolor{Blue}{rgb}{0,0,1}
\definecolor{Green}{rgb}{0,1,0}
\definecolor{magenta}{rgb}{1,0,.6}
\definecolor{lightblue}{rgb}{0,.5,1}
\definecolor{lightpurple}{rgb}{.6,.4,1}
\definecolor{gold}{rgb}{.6,.5,0}
\definecolor{orange}{rgb}{1,0.4,0}
\definecolor{hotpink}{rgb}{1,0,0.5}
\definecolor{newcolor2}{rgb}{.5,.3,.5}
\definecolor{newcolor}{rgb}{0,.3,1}
\definecolor{newcolor3}{rgb}{1,0,.35}
\definecolor{darkgreen1}{rgb}{0, .35, 0}
\definecolor{darkgreen}{rgb}{0, .6, 0}
\definecolor{darkred}{rgb}{.75,0,0}
\xdefinecolor{olive}{cmyk}{0.64,0,0.95,0.4}
\xdefinecolor{purpleish}{cmyk}{0.75,0.75,0,0}
% can also choose different themes for the "inside" and "outside"
% \usepackage{beamerinnertheme_______}
% inner themes include circles, default, inmargin, rectangles, rounded
% \usepackage{beamerouterthemesmoothbars}
% outer themes include default, infolines, miniframes, shadow, sidebar, smoothbars, smoothtree, split, tree
\useoutertheme[subsection=false]{smoothbars}
% to have the same footer on all slides
%\setbeamertemplate{footline}[text line]{STUFF HERE!}
\setbeamertemplate{footline}[text line]{} % makes the footer EMPTY
% include packages
\usepackage{subfigure}
\usepackage{multicol}
\usepackage{amsmath}
\usepackage{epsfig}
\usepackage{graphicx}
\usepackage[all,knot]{xy}
\xyoption{arc}
\usepackage{url}
\usepackage{multimedia}
\usepackage{hyperref}
% Package pour le français
\usepackage[utf8]{inputenc}
\usepackage[french]{babel} % Pour adopter les règles de typographie française
\usepackage[T1]{fontenc} % Pour que LaTeX comprenne les caractères accentués ;
                         % norme iso-8859, cela risque de ne pas marcher avec
                         % des fichiers créés sous windows
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Title Page Info %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\logo{\href{http://ecee.colorado.edu/microwave/index.php}{\includegraphics[height=0.75cm]{img/CU3.png}}} 
\title{TRL algorithm to de-embed a RF test fixture}
%\subtitle{Introducing to waveform engineering}
\author{\href{http://www.microwave.fr}{T. Reveyrand}}
\institute{University of Colorado - Boulder \\ECEE department \\425 UCB Boulder, Colorado 80309 \\ USA}
\date{July 2013}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Begin Your Document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\frame{
	\titlepage 
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \frame{\tableofcontents}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Introduction}
\subsection*{Introduction}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% INTRODUCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% =================================================================
\begin{frame}{Motivations for this talk}
	\vspace{-0.3cm}	
	\center
	\includegraphics[width=0.5\textwidth]{img/test-fixture.jpg}
	\begin{itemize}
		\item De-embedding of a test-fixture measured in the coaxial reference planes ;
		\item Perform a TRL calibration when the VNA provides some ill conditioned solutions ("Reflect" checking not correct) ;
		\item Offer a open, complete and ready-to-use source code for educational purpose.
		
	\end{itemize}
	
\end{frame}
\subsection*{Basics}
\begin{frame}{Some definitions : [S] parameters}
	\vspace{-0.3cm}	
	\center
	\includegraphics[width=0.4\textwidth]{img/quadripole.pdf}
	
%	\begin{boldequation}
\begin{equation}
	\left( {\begin{array}{*{20}c}
   {b_1}  \\
   {b_2}  \\
\end{array}} \right) = \left[ {\begin{array}{*{20}c}
   {S_{11}} & {S_{12} }  \\
   {S_{21} } & {S_{22} }   \\
\end{array}} \right] \cdot \left( {\begin{array}{*{20}c}
   {a_1 }  \\
   {a_2 }  \\
\end{array}} \right)
\end{equation}
	
\end{frame}
\begin{frame}{Some definitions : [T] parameters}
	\vspace{-0.3cm}	
	\center
	\includegraphics[width=0.4\textwidth]{img/quadripole.pdf}
	
	\begin{equation}
	\left( {\begin{array}{*{20}c}
   {a_1}  \\
   {b_1}  \\
\end{array}} \right) = \left[ {\begin{array}{*{20}c}
   {T_{11}} & {T_{12} }  \\
   {T_{21} } & {T_{22} }   \\
\end{array}} \right] \cdot \left( {\begin{array}{*{20}c}
   {b_2 }  \\
   {a_2 }  \\
\end{array}} \right)
	\end{equation}
	
\end{frame}
\begin{frame}{Some definitions : [T] parameters}
	\vspace{-0.3cm}	
	\center
	\includegraphics[width=0.8\textwidth]{img/cascade.pdf}
	
	\begin{equation}
	\left[T_{Total}\right]=\left[T_{A}\right]\cdot\left[T_{B}\right]\cdot\left[T_{C}\right]
	\end{equation}
	
\end{frame}
\begin{frame}{Conversions between [S] and [T]}
	\begin{itemize}
	\item $\left[S\right]$ to $\left[T\right]$
	\begin{equation}
		\left[T\right]=\left[ {\begin{array}{*{20}c}
   { -\frac{1}{S_{21}} } & {-\frac{S_{22}} {S_{21}} }  \\
   {\frac{S_{11}} {S_{21}} } & { \frac{S_{21} \cdot S_{12}-S_{11} \cdot S_{22}}{S_{21}} }   \\
\end{array}} \right]
\end{equation}
\item $\left[T\right]$ to $\left[S\right]$
	\begin{equation}
		\left[S\right]=\left[ {\begin{array}{*{20}c}
   { -\frac{T_{21}}{T_{11}} } & {\frac{T_{11}\cdot T_{22} - T_{12}\cdot T_{21}} {T_{11}} }  \\
   {\frac{1} {T_{11}} } & { -\frac{T_{12}}{T_{11}} }   \\
\end{array}} \right]
\end{equation}
\end{itemize}
\end{frame}
\section{TRL}
\subsection{Standards}
\begin{frame}{Standards for the TRL algorithm}
	\vspace{-0.3cm}	
	\begin{itemize}
                \item \underline{T}HRU : totally known
           			\begin{equation}
						\left[T_{THRU}^{Std}\right]=\left[ {\begin{array}{*{20}c}
 						{1} & {0 }  \\
   						{0 } & {1 }   \\
						\end{array}} \right]
					\end{equation}  
                
                \item \underline{R}EFLECT : unknown
            		\begin{equation}
						\text{Sgn}\left(\Re\left\{\Gamma_{REFLECT}^{Std}\right\}\right)=\pm 1
					\end{equation}                
                \item \underline{L}INE : partially known
                     \begin{equation}
						\left[T_{LINE}^{Std}\right]=\left[ {\begin{array}{*{20}c}
 						{e^{-\gamma\cdot l}} & {0 }  \\
   						{0 } & {e^{+\gamma\cdot l}}   \\
						\end{array}} \right]
					\end{equation} 
    \end{itemize}
	
\end{frame}
\subsection{THRU and LINE Measurements}
\begin{frame}{Measuring the THRU}
	\vspace{-0.3cm}	
           			\begin{equation}
						\left[T_{THRU}^{Meas}\right]=\left[T_{IN}\right]\cdot\left[T_{THRU}^{Std}\right]\cdot\left[T_{OUT}\right]
					\end{equation}  
					
					\begin{equation}
						{\left[T_{IN}\right]}^{-1}\cdot\left[T_{THRU}^{Meas}\right]=\left[T_{THRU}^{Std}\right]\cdot\left[T_{OUT}\right]
					\end{equation}
					
					\begin{equation}
						{\left[T_{IN}\right]}^{-1}\cdot\left[T_{THRU}^{Meas}\right]=\left[T_{OUT}\right]
					\end{equation}
					
					$${\left[T_{IN}\right]}^{-1} = \left[\overline{T_{IN}}\right]$$
 
 					\begin{equation}
						\left[\overline{T_{IN}}\right]\cdot\left[T_{THRU}^{Meas}\right]=\left[T_{OUT}\right]
						\label{eq2}
					\end{equation}               
\end{frame}
\begin{frame}{Measuring the LINE}
	\vspace{-0.3cm}	
           			\begin{equation}
						\left[T_{LINE}^{Meas}\right]=\left[T_{IN}\right]\cdot\left[T_{LINE}^{Std}\right]\cdot\left[T_{OUT}\right]
					\end{equation}  
					
					\begin{equation}
						{\left[T_{IN}\right]}^{-1}\cdot\left[T_{LINE}^{Meas}\right]=\left[T_{LINE}^{Std}\right]\cdot\left[T_{OUT}\right]
					\end{equation}
					
					
					
					
					
					\begin{equation}
						\left[\overline{T_{IN}}\right]\cdot\left[T_{LINE}^{Meas}\right]=\left[ {\begin{array}{*{20}c}
 						{e^{-\gamma\cdot l}} & {0 }  \\
   						{0 } & {e^{+\gamma\cdot l}}   \\
						\end{array}} \right]\cdot\left[T_{OUT}\right]
						\label{eq1}
					\end{equation}
			             
\end{frame}
\subsection{$T_{OUT}$ parameters : $\left(\frac{T_{12}}{T_{11}}\right)$ and $\left(\frac{T_{21}}{T_{22}}\right)$}
\begin{frame}{OUTPUT : Defining the [M] matrix}
	\vspace{-0.3cm}	
Equation (\ref{eq1}) is :
	\begin{equation}
	\left[ {\begin{array}{*{20}c}{\overline{T}_{11}} & {\overline{T}_{12}}  \\ {\overline{T}_{21}} & {\overline{T}_{22}} \end{array}} \right] \cdot\left[T_{LINE}^{Meas}\right] = \left[ {\begin{array}{*{20}c}{T_{11}\cdot e^{-\gamma\cdot l}} & {T_{12}\cdot e^{-\gamma\cdot l}}  \\ {T_{21}\cdot e^{+\gamma\cdot l}} & {T_{22}\cdot e^{+\gamma\cdot l}} \end{array}} \right]	
	\label{eq3}		
	\end{equation}
(\ref{eq2}) in (\ref{eq3}) give :
	\begin{equation}
	\left[ {\begin{array}{*{20}c}{T_{11}} & {T_{12}}  \\ {T_{21}} & {T_{22}} \end{array}} \right] \cdot {\left[T_{THRU}^{Meas}\right]}^{-1} \cdot \left[T_{LINE}^{Meas}\right] = \left[ {\begin{array}{*{20}c}{T_{11}\cdot e^{-\gamma\cdot l}} & {T_{12}\cdot e^{-\gamma\cdot l}}  \\ {T_{21}\cdot e^{+\gamma\cdot l}} & {T_{22}\cdot e^{+\gamma\cdot l}} \end{array}} \right]	
	\end{equation}
		or		
		\begin{equation}
	\left[ {\begin{array}{*{20}c}{T_{11}} & {T_{12}}  \\ {T_{21}} & {T_{22}} \end{array}} \right] \cdot \left[M\right] = \left[ {\begin{array}{*{20}c}{T_{11}\cdot e^{-\gamma\cdot l}} & {T_{12}\cdot e^{-\gamma\cdot l}}  \\ {T_{21}\cdot e^{+\gamma\cdot l}} & {T_{22}\cdot e^{+\gamma\cdot l}} \end{array}} \right]	
	\label{eq_M}
	\end{equation}		
	
		with $$\left[M\right]={\left[T_{THRU}^{Meas}\right]}^{-1} \cdot \left[T_{LINE}^{Meas}\right]$$		
				
				     
\end{frame}
\begin{frame}{OUTPUT : TRL Equations}
	\vspace{-0.3cm}	
Equations given by (\ref{eq_M}) are :
	\begin{equation}
T_{11}\cdot M_{11} + T_{12}\cdot M_{21} = T_{11} \cdot e^{-\gamma \cdot l}
	\label{g3}		
	\end{equation}
	\begin{equation}
T_{11}\cdot M_{12} + T_{12}\cdot M_{22} = T_{12} \cdot e^{-\gamma \cdot l}
	\label{g4}		
	\end{equation}		
	\begin{equation}
T_{21}\cdot M_{11} + T_{22}\cdot M_{21} = T_{21} \cdot e^{+\gamma \cdot l}
	\label{g5}		
	\end{equation}						
	\begin{equation}
T_{21}\cdot M_{12} + T_{22}\cdot M_{22} = T_{22} \cdot e^{+\gamma \cdot l}
	\label{g6}		
	\end{equation}					     
\end{frame}
\begin{frame}{OUTPUT : Solving $\left(\frac{T_{12}}{T_{11}}\right)$}
	\vspace{-0.3cm}	
(\ref{g4}) gives :
	\begin{equation}
 e^{-\gamma \cdot l} = \left(\frac{T_{11}}{T_{12}}\right)\cdot M_{12} + M_{22}
	\label{g7}		
	\end{equation}
(\ref{g7}) in (\ref{g3}) gives :	
	\begin{equation}
T_{11}\cdot M_{11} + T_{12}\cdot M_{21} = T_{11} \cdot \left[ \left(\frac{T_{11}}{T_{12}}\right)\cdot M_{12} + M_{22} \right]
	\end{equation}
		\begin{equation}
M_{11} + \left(\frac{T_{12}}{T_{11}}\right)\cdot M_{21} = \left(\frac{T_{11}}{T_{12}}\right) \cdot  M_{12} + M_{22} 
	\end{equation}
		\begin{equation}
{\left(\frac{T_{12}}{T_{11}}\right)}^2 \cdot M_{21} + \left(\frac{T_{12}}{T_{11}}\right) \cdot \left( M_{11} - M_{22}\right) - M_{12}  = 0
	\end{equation}	
	
	
\end{frame}
\begin{frame}{OUTPUT : Solving $\left(\frac{T_{22}}{T_{21}}\right)$}
	\vspace{-0.3cm}	
(\ref{g5}) gives :
	\begin{equation}
 e^{+\gamma \cdot l} = M_{11} + \left(\frac{T_{22}}{T_{21}}\right)\cdot M_{21}
	\label{g8}		
	\end{equation}
(\ref{g8}) in (\ref{g6}) gives :	
	\begin{equation}
T_{21}\cdot M_{12} + T_{22}\cdot M_{22} = T_{22} \cdot \left[ \left(\frac{T_{22}}{T_{21}}\right)\cdot M_{21} + M_{11} \right]
	\end{equation}
		\begin{equation}
M_{22} + \left(\frac{T_{21}}{T_{22}}\right)\cdot M_{12} = \left(\frac{T_{22}}{T_{21}}\right) \cdot  M_{21} + M_{11} 
	\end{equation}
		\begin{equation}
{\left(\frac{T_{22}}{T_{21}}\right)}^2 \cdot M_{21} + \left(\frac{T_{22}}{T_{21}}\right) \cdot \left( M_{11} - M_{22}\right) - M_{12}  = 0
	\end{equation}	
	
	
\end{frame}
\begin{frame}{OUTPUT :  $\left(\frac{T_{12}}{T_{11}}\right)$ and $\left(\frac{T_{22}}{T_{21}}\right)$}
	\vspace{-0.3cm}	
	\begin{equation}
 X^2 \cdot M_{21}+X \cdot \left[ M_{11}-M{22}\right] - M_{12}
 \label{eq_S12}
	\end{equation}
	
	This polynom has 2 solutions : $\left(\frac{T_{12}}{T_{11}}\right)$ and $\left(\frac{T_{22}}{T_{21}}\right)$
	
	Usually, $\left|\frac{T_{12}}{T_{11}}\right|$ < $\left|\frac{T_{22}}{T_{21}}\right|$
\vspace{1.0cm}	
If we consider the following polynom :
	\begin{equation}
 X^2 \cdot M_{12}+X \cdot \left[ M_{22}-M{11}\right] - M_{21}
	\end{equation}
Then the 2 solutions are  $\left(\frac{T_{11}}{T_{12}}\right)$ and $\left(\frac{T_{21}}{T_{22}}\right)$
\end{frame}
\subsection{$\overline{T}_{IN}$ parameters : $\left(\frac{\overline{T}_{12}}{\overline{T}_{11}}\right)$ and $\left(\frac{\overline{T}_{21}}{\overline{T}_{22}}\right)$}
\begin{frame}{INPUT : Defining the [N] matrix}
	\vspace{-0.3cm}	
Equation (\ref{eq1}) is :
	\begin{equation}
	\left[ {\begin{array}{*{20}c}{\overline{T}_{11}} & {\overline{T}_{12}}  \\ {\overline{T}_{21}} & {\overline{T}_{22}} \end{array}} \right] \cdot\left[T_{LINE}^{Meas}\right] = \left[ {\begin{array}{*{20}c}
 						{e^{-\gamma\cdot l}} & {0 }  \\
   						{0 } & {e^{+\gamma\cdot l}}   \\
						\end{array}} \right] \cdot \left[ {\begin{array}{*{20}c}{T_{11}} & {T_{12}}  \\ {T_{21}} & {T_{22}} \end{array}} \right]	
	\label{eqN}		
	\end{equation}
(\ref{eq2}) in (\ref{eqN}) gives :
	\begin{equation}
	\left[ {\begin{array}{*{20}c}{\overline{T}_{11}} & {\overline{T}_{12}}  \\ {\overline{T}_{21}} & {\overline{T}_{22}} \end{array}} \right] \cdot\left[T_{LINE}^{Meas}\right] = 	\left[ {\begin{array}{*{20}c}
 						{e^{-\gamma\cdot l}} & {0 }  \\
   						{0 } & {e^{+\gamma\cdot l}}   \\
						\end{array}} \right] \cdot \left[ {\begin{array}{*{20}c}{\overline{T}_{11}} & {\overline{T}_{12}}  \\ {\overline{T}_{21}} & {\overline{T}_{22}} \end{array}} \right] \cdot\left[T_{THRU}^{Meas}\right]
	\end{equation}
		or		
		\begin{equation}
	\left[ {\begin{array}{*{20}c}{\overline{T}_{11}} & {\overline{T}_{12}}  \\ {\overline{T}_{21}} & {\overline{T}_{22}} \end{array}} \right] \cdot \left[N\right] = \left[ {\begin{array}{*{20}c}{\overline{T}_{11}\cdot e^{-\gamma\cdot l}} & {\overline{T}_{12}\cdot e^{-\gamma\cdot l}}  \\ {\overline{T}_{21}\cdot e^{+\gamma\cdot l}} & {\overline{T}_{22}\cdot e^{+\gamma\cdot l}} \end{array}} \right]	
	\label{eq_N}
	\end{equation}		
	
		with $$\left[N\right]=\left[T_{LINE}^{Meas}\right] \cdot {\left[T_{THRU}^{Meas}\right]}^{-1}$$		
				
				     
\end{frame}
\begin{frame}{INPUT :  $\left(\frac{\overline{T}_{12}}{\overline{T}_{11}}\right)$ and $\left(\frac{\overline{T}_{22}}{\overline{T}_{21}}\right)$}
	\vspace{-0.3cm}	
Equation (\ref{eq_N}) is similar to (\ref{eq_M}). Thus we can consider : 
	\begin{equation}
 X^2 \cdot N_{21}+X \cdot \left[ N_{11}-N_{22}\right] - N_{12}
 	\label{eq_S34}
	\end{equation}
	
	This polynom has 2 solutions : $\left(\frac{\overline{T}_{12}}{\overline{T}_{11}}\right)$ and $\left(\frac{\overline{T}_{22}}{\overline{T}_{21}}\right)$
	
	Usually, $\left|\frac{\overline{T}_{12}}{\overline{T}_{11}}\right|$ < $\left|\frac{\overline{T}_{22}}{\overline{T}_{21}}\right|$
\vspace{1.0cm}	
If we consider the following polynom :
	\begin{equation}
 X^2 \cdot N_{12}+X \cdot \left[ N_{22}-N_{11}\right] - N_{21}
	\end{equation}
Then the 2 solutions are  $\left(\frac{\overline{T}_{11}}{\overline{T}_{12}}\right)$ and $\left(\frac{\overline{T}_{21}}{\overline{T}_{22}}\right)$
\end{frame}
\subsection{The THRU equality : $\left(\frac{T_{11}}{\overline{T}_{11}}\right)$ and $\left(\frac{T_{21}}{\overline{T}_{22}}\right)$}
\begin{frame}{The THRU equality}
	\vspace{-0.3cm}	
\center
	\includegraphics[width=0.8\textwidth]{img/thru.pdf}
$$ \left( {\begin{array}{*{20}c}
   {b_2}  \\
   {a_2}  \\
\end{array}} \right) = \left[ {\begin{array}{*{20}c}
   {\overline{T}_{11}} & {\overline{T}_{12} }  \\
   {\overline{T}_{21} } & {\overline{T}_{22} }   \\
\end{array}} \right] \cdot \left( {\begin{array}{*{20}c}
   {a_1 }  \\
   {b_1 }  \\
\end{array}} \right) $$
$$ \left( {\begin{array}{*{20}c}
   {b_2}  \\
   {a_2}  \\
\end{array}} \right) = \left[ {\begin{array}{*{20}c}
   {T_{11}} & {T_{12} }  \\
   {T_{21} } & {T_{22} }   \\
\end{array}} \right] \cdot \left( {\begin{array}{*{20}c}
   {b_3 }  \\
   {a_3 }  \\
\end{array}} \right) $$
% \begin{itemize}
% \item {Forward}
% bla bla
%\item {Reverse}
%bla bla
%\end{itemize}	
\end{frame}
\begin{frame}{Forward mode : $b_2$ equality to extract $ \left( \frac{T_{11}}{\overline{T}_{11}}\ \right)$}
	\vspace{-0.3cm}	
The $b_2$ equality leads us to :
	\begin{equation}
 \overline{T}_{11} \cdot a_1 +  \overline{T}_{12} \cdot b_1 =  T_{11} \cdot b_3 +  T_{12} \cdot a_3 
	\end{equation}
	
And by definition, about the THRU measurement, we know :
\begin{center}
 $S_{21}^{Meas}={\left.\frac{b_3}{a_1}\right|}_{a_3=0}$ and $S_{11}^{Meas}={\left.\frac{b_1}{a_1}\right|}_{a_3=0}$
\end{center}
Thus,
	\begin{equation}
 a_1 \cdot \left( \overline{T}_{11} + \overline{T}_{12} \cdot \frac{b_1}{a_1} \right) = T_{11} \cdot b_3 
 	\end{equation}
	\begin{equation}
 \overline{T}_{11} \cdot \left( 1 + \left( \frac{\overline{T}_{12}}{\overline{T}_{11}} \right) \cdot S_{11}^{Meas} \right) = T_{11} \cdot S_{21}^{Meas} 
 	\end{equation}	
	\begin{equation}
 \left( \frac{T_{11}}{\overline{T}_{11}}\ \right) = \frac {\left( 1 + \left( \frac{\overline{T}_{12}}{\overline{T}_{11}} \right) \cdot S_{11}^{Meas} \right)}{S_{21}^{Meas}}   
 \label{eq_S5}
 	\end{equation}	
\end{frame}
\begin{frame}{Reverse mode : $a_2$ equality to extract $ \left( \frac{T_{21}}{\overline{T}_{21}}\ \right)$}
	\vspace{-0.3cm}	
The $a_1$ equality leads us to :
	\begin{equation}
 \overline{T}_{21} \cdot a_1 +  \overline{T}_{22} \cdot b_1 =  T_{21} \cdot b_3 +  T_{22} \cdot a_3 
	\end{equation}
	
For the THRU measurement, we know :
\begin{center}
 $S_{12}^{Meas}={\left.\frac{b_1}{a_3}\right|}_{a_1=0}$ and $S_{22}^{Meas}={\left.\frac{b_3}{a_3}\right|}_{a_1=0}$
\end{center}
Thus,
	\begin{equation}
 b_1 \cdot  \overline{T}_{22} = T_{21} \cdot b_3 + T_{21} \cdot a_3
 	\end{equation}
	leads us to :
	\begin{equation}
 \left( \frac{T_{21}}{\overline{T}_{22}} \right) = \frac {S_{12}^{Meas}}{S_{22}^{Meas} + \left( \frac{T_{22}}{T_{21}} \right)}
 	\label{eq_S6}
 	\end{equation}	
	
\end{frame}
\subsection{The REFLECT equality : Extracting $\left( \frac{\overline{T}_{21}}{\overline{T}_{11}} \right)$}
\begin{frame}{REFLECT Measurement} 
	\center
	\includegraphics[width=0.8\textwidth]{img/reflect.pdf}
\begin{equation}
	\Gamma_{REFLECT}^{Std}=\frac{b_1}{a_1}=\frac{\overline{T}_{21} + \overline{T}_{22} \cdot S_{11}^{Meas}}{\overline{T}_{11} + \overline{T}_{12} \cdot S_{11}^{Meas}}
	\label{std_verif}
\end{equation}
\begin{equation}
	\Gamma_{REFLECT}^{Std}=\frac{b_2}{a_2}=\frac{T_{12} + T_{11} \cdot S_{22}^{Meas}}{T_{22} + T_{21} \cdot S_{22}^{Meas}}
\end{equation}
\end{frame}
\begin{frame}{REFLECT Equality} 
	\center
	\vspace{-1cm}	
\begin{equation}
		\frac{\overline{T}_{21} + \overline{T}_{22} \cdot S_{11}^{Meas}}{\overline{T}_{11} + \overline{T}_{12} \cdot S_{11}^{Meas}}=\frac{T_{12} + T_{11} \cdot S_{22}^{Meas}}{T_{22} + T_{21} \cdot S_{22}^{Meas}}
\end{equation}
	
	
\begin{equation}
	\frac{\overline{T}_{21}}{\overline{T}_{11}} \cdot \left( \frac{1 + \left( \frac{\overline{T}_{22}}{\overline{T}_{21}} \right) \cdot S_{11}^{Meas}}
{1 + \left( \frac{\overline{T}_{12}}{\overline{T}_{11}} \right) \cdot S_{11}^{Meas}} \right) = \frac{T_{11}}{T_{21}} \cdot \left( \frac{S_{22}^{Meas}+ \left( \frac{T_{12}}{T_{11}}\right) }{S_{22}^{Meas}+ \left( \frac{T_{22}}{T_{21}}\right) }\right) 
\end{equation}
\begin{equation}
	{\left( \overline{T}_{21} \right)}^2  \cdot \left( \frac{T_{21}}{\overline{T}_{22}} \right) \cdot \left( \frac{\overline{T}_{22}}{\overline{T}_{21}}\right) =  {\left( \overline{T}_{11} \right)}^2  \cdot \left( \frac{T_{11}}{\overline{T}_{11}} \right) \cdot \frac{\left( \frac{S_{22}^{Meas}+ \left( \frac{T_{12}}{T_{11}}\right) }{S_{22}^{Meas}+ \left( \frac{T_{22}}{T_{21}}\right) }\right)}{  \left( \frac{1 + \left( \frac{\overline{T}_{22}}{\overline{T}_{21}} \right) \cdot S_{11}^{Meas}}
{1 + \left( \frac{\overline{T}_{12}}{\overline{T}_{11}} \right) \cdot S_{11}^{Meas}} \right)}
\end{equation}
\end{frame}
\begin{frame}{REFLECT Equality} 
	\center
	\vspace{-1cm}	
\begin{equation}
	{\left( \frac{\overline{T}_{21}}{\overline{T}_{11}} \right)} = \pm \sqrt{\frac{\left( \frac{T_{11}}{\overline{T}_{11}} \right) \cdot \left( \frac{S_{22}^{Meas}+ \left( \frac{T_{12}}{T_{11}}\right) }{S_{22}^{Meas}+ \left( \frac{T_{22}}{T_{21}}\right) }\right)}{\left( \frac{T_{21}}{\overline{T}_{22}} \right) \cdot \left( \frac{\overline{T}_{22}}{\overline{T}_{21}}\right) \cdot \left( \frac{1 + \left( \frac{\overline{T}_{22}}{\overline{T}_{21}} \right) \cdot S_{11}^{Meas}}
{1 + \left( \frac{\overline{T}_{12}}{\overline{T}_{11}} \right) \cdot S_{11}^{Meas}} \right)}}
\label{eq_S7}
\end{equation}
There are 2 solutions. We select the good one thanks to the knowledge of $\text{Sgn}\left(\Re{\left\{\Gamma_{REFLECT}^{Std}\right\}}\right)=\pm 1$ in (\ref{std_verif}):
\begin{equation}
	\Gamma_{REFLECT}^{Std}=\left(\frac{\overline{T}_{21}}{\overline{T}_{11}}\right) \cdot \left( \frac{1 + \left( \frac{\overline{T}_{22}}{\overline{T}_{21}} \right) \cdot S_{11}^{Meas}}
{1 + \left( \frac{\overline{T}_{12}}{\overline{T}_{11}} \right) \cdot S_{11}^{Meas}} \right)
\end{equation}
\end{frame}
\begin{frame}{TRL Completed} 
	%\center
	%\vspace{-1cm}	
The TRL algorithm is completed. We got 7 parameters from :
\begin{itemize}
	\item {The $\left[M\right]$ matrix:}
	$\left(\frac{T_{12}}{T_{11}}\right)$ and $\left(\frac{T_{22}}{T_{21}}\right)$ from (\ref{eq_S12}) ;
	\item {The $\left[N\right]$ matrix:}
	$\left(\frac{\overline{T}_{12}}{\overline{T}_{11}}\right)$ and $\left(\frac{\overline{T}_{22}}{\overline{T}_{21}}\right)$ from (\ref{eq_S34});
	\item {The THRU equality:}
	$\left( \frac{T_{11}}{\overline{T}_{11}}\ \right)$ from (\ref{eq_S5}) and $\left( \frac{T_{21}}{\overline{T}_{22}} \right)$ from (\ref{eq_S6}) ;
	\item {The REFLECT equality:}	
	$\left( \frac{\overline{T}_{21}}{\overline{T}_{11}} \right)$ from (\ref{eq_S7}) ;
\end{itemize}
\vspace{0.5cm}
It is suffisent for $\left[S\right]$ parameters de-embedding but not for power measurement.
We need to normalize correctly the system of equation (finding the absolute value of $\overline{T}_{11}$). 
For that purpose we will consider a reciprocity assumption : $S_{21}^{IN}=S_{12}^{IN}$.
 
 \end{frame}
 \section{Reciprocity}
 \subsection*{Reciprocity} 
 % \subsection{Conversion between $\left[S_{IN}\right]$ and $\left[\overline{T}_{IN}\right]$}
\begin{frame}{Reciprocity assumption} 
	We should have :
	
	\begin{equation}
		\left[\overline{T}_{IN}\right]=\left[ {\begin{array}{*{20}c}
   { \frac{S_{21} \cdot S_{12}-S_{11} \cdot S_{22}}{S_{12}} } & {\frac{S_{22}} {S_{12}} }  \\
   {-\frac{S_{11}} {S_{12}} } & {\frac{1} {S_{12}} }   \\
\end{array}} \right]
	\end{equation}
	
	Thus the reciprocity assumption ($S_{21} = S_{12}$) leds to :
		\begin{equation}
		\overline{T}_{11} \cdot \overline{T}_{22} - \overline{T}_{12} \cdot \overline{T}_{21} = 1
		\label{reciprocity}
	\end{equation}
	\end{frame}
	
	\begin{frame}{Reciprocity assumption} 
	We can obtain from TRL the complete $\left[ \overline{T}_{IN} \right]$ and $\left[ T_{OUT} \right]$ matrix from an arbitrary value of $\overline{T}_{11}$. Those matrix has to be multiplied by K in order to fullfill equation (\ref{reciprocity}) such as :
	
		\begin{equation}
		K^2 = \frac{1}{\overline{T}_{11} \cdot \overline{T}_{22} - \overline{T}_{12} \cdot \overline{T}_{21}}
	\end{equation}	
		\begin{equation}
		K = \pm \sqrt{\frac{1}{\overline{T}_{11} \cdot \overline{T}_{22} - \overline{T}_{12} \cdot \overline{T}_{21}}}
	\end{equation}		
	
	There are 2 solutions. The good one is selected such as the extrapolated phase of $S_{21}$ on DC is as close as possible of zero.
	
	
\end{frame}
\section{Scilab Code}
\subsection{Presentation}
\begin{frame}{This code is now available in Scilab}
	\vspace{-0.3cm}	
	\center
	\includegraphics[width=0.65\textwidth]{img/toolbox.jpg}
	
	\url{http://www.microwave.fr/uW.html}
	
\end{frame}
\subsection{Example}
\begin{frame}{Example with an OPEN reflect}
	\vspace{-0.3cm}	
	\center
	S2P Measurements : Thru (black), Line (blue) and Open (red).
	\includegraphics[width=0.6\textwidth]{img/input_open.pdf}
	
\end{frame}
\begin{frame}{Example with an OPEN reflect}
	\vspace{-0.3cm}	
	\center
	S2P Extracted : Port 1 (black), Port 2 (blue) and De-embedded open (red).
	
	
	\includegraphics[width=0.6\textwidth]{img/output_open.pdf}
	
\end{frame}
\begin{frame}{Example with an SHORT reflect}
	\vspace{-0.3cm}	
	\center
	S2P Measurements : Thru (black), Line (blue) and Short (red).
	\includegraphics[width=0.6\textwidth]{img/input_short.pdf}
	
\end{frame}
\begin{frame}{Example with an SHORT reflect}
	\vspace{-0.3cm}	
	\center
	S2P Extracted : Port 1 (black), Port 2 (blue) and De-embedded short (red).
	
	
	
	\includegraphics[width=0.6\textwidth]{img/output_short.pdf}
	
\end{frame}
\subsection{Insights} 
\begin{frame}{Source Code : uW\_TRL\_calc.sci}
	\vspace{-0.3cm}	
	\center
	\includegraphics[width=0.55\textwidth]{img/code1.png}
	
\end{frame}
\begin{frame}{Source Code : uW\_TRL\_calc.sci}
	\vspace{-0.3cm}	
	\center
	\includegraphics[width=0.75\textwidth]{img/code2.png}
	
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End Your Document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}