YOUR TITLE

by

YOUR NAME

A [thesis | dissertation] submitted in partial fulfillment of the requirements for the degree of [Master of XXXX | Doctor of Philosophy] in Computer Science

Examination Committee: Dr. YOUR ADVIOR (Chairperson) Dr. YOUR COMMITTEE #1 Dr. YOUR COMMITTEE #2

Nationality:ThaiPrevious Degree:Master of Engineering in Computer Science
Asian Institute of Technology, Thailand

Scholarship Donor: Royal Thai Government

Asian Institute of Technology School of Engineering and Technology Thailand May XXXX

Acknowledgments

Write your touching message here..

Abstract

Abstract here ...

Table of Contents

Chapter	Title	Page i iii iiii iv v vi 1 1 1 1 1 1 3 3 5
	Title Page Acknowledgments Abstract Table of Contents List of Figures List of Tables	i ii iii iv v v vi
1	Introduction	1
	 1.1 Overview 1.2 Problem Statement 1.3 Objectives 1.4 Limitations and Scope 1.5 Thesis Outline 	1 1 1 1 1
2	Literature Review	3
	2.1 Section Name in Literature Review	3
3	Methodology	5
	3.1 System Overview3.2 System Design	5 5
4	Experimental Results	7
	4.1 Section Name in Experimental Results	7
5	Conclusion and Recommendations	9
	5.1 Conclusion5.2 Recommendations	9 9
6	References	10
7	Appendices	11

List of Figures

Figure	Title	Page	
1.1	CCTV monitoring room.	2	
2.1	Mesh feature calculation	4	
A.1	CCTV monitoring room in Appendix A.	12	

List of Tables

Table	Title	Page
4.1	Text shown in the LOT.	8

Introduction

Some text.

1.1 Overview

Human monitoring is therefore becoming increasingly expensive and ineffective as the torrent of video data increases. For instance, in a CCTV monitoring room (see Figure 1.1), security operators are required to monitor 24 hours a day and be ready to take action when an alarm occurs.

1.2 Problem Statement

Some text ...

1.3 Objectives

Some text ...

1.4 Limitations and Scope

Some text ...

1.5 Thesis Outline

I organize the rest of this dissertation as follows.

In Chapter 2, I describe the literature review.

In Chapter 3, I propose my methodology.

In Chapter 4, I present the experimental results.

Figure 1.1: CCTV monitoring room. Reprinted from the Twenty First Security Web site (http://www.twentyfirstsecurity.com.au/).

Finally, in Chapter 5, I conclude my thesis.

Literature Review

Some intro..

2.1 Section Name in Literature Review

Example text below ..

Yamato et al. (1992) apply the background subtraction technique to extract blobs or human from a scene by the following conditions:

if
$$|I_a(x,y) - I_b(x,y)| < T, I_e(x,y) = 0$$

else $I_e(x,y) = I_a(x,y),$

where $I_e(x, y)$ is a human extracted image, $I_a(x, y)$ is an original image, $I_b(x, y)$ is a background image, and T is a threshold. Figure 2.1 shows something. Some work also uses mesh features (Yamato et al., 1992).

Figure 2.1: Mesh feature calculation. Reprinted from the work of Yamato et al. (1992).

Methodology

Some intro..

3.1 System Overview

Some text .. Algorithm 1 just a pseudocode.

3.2 System Design

3.2.1 Design A

Some text ..

Algorithm 1 Lame Algorithm

Input: *B*: set of all current blobs

Input: *T*: set of all current tracks

Input: *M*: merged track association matrix

Output: \widetilde{T} : set of all revised tracks

Output: \widetilde{M} : revised merged track association matrix

 $\widetilde{T} \leftarrow \emptyset; \widetilde{M} \leftarrow \emptyset; L \leftarrow \emptyset$

 $A \leftarrow \text{Get-Overlap-Area-Matrix}(B, T)$

for each $t \in T$ do

if t is marked as processed then continue

 $B' \leftarrow \{b' \mid A(b',t) > 0\} \{B' \text{ contains candidate blobs for track } t.\}$

 $T' \leftarrow \{t\} \cup \{t' \mid M(t,t') = 1\} \{T' \text{ contains all tracks currently merged with } t.\}$

if $|B'| \ge 1$ then

for each $t' \in T'$ do

Let $b = \underset{b' \in B'}{\operatorname{argmax}} S(b', t')$ $L \leftarrow L \cup \{(t', b)\}$

Mark-Track-As-Processed(t')

end for

end if

end for

for each $(t_i, t_j) \in T \times T$ do

If $\exists b \text{ s.t. } (t_i, b) \in L \land (t_j, b) \in L, \widetilde{M}_{ij} \leftarrow 1$, otherwise $\widetilde{M}_{ij} \leftarrow 0$

end for

 $T^* \leftarrow \{t^* \mid \neg \exists b \in B \text{ s.t. } (t^*, b) \in L\} \{T^* \text{ contains tracks for which "stale count" will be increased.}\}$

 $\widetilde{T} \leftarrow \text{Update-Or-Delete-Stale-Tracks}(T, T^*)$

 $B^* \leftarrow \{b^* \mid \neg \exists t \in T \text{ s.t. } (t, b^*) \in L\} \{B^* \text{ contains blobs with no tracks assigned.}\}$

 $\widetilde{T} \leftarrow \text{Add-New-Tracks-For-Not-Linked-Blobs}(\widetilde{T}, B^*)$

Experimental Results

Some intro..

4.1 Section Name in Experimental Results

Table 4.1 shows a table.

Batch method	TP	FP	TN	FN	TPR	FPR
Local (<i>z</i> -scoring)	24	42	444	0	1	0.086
Local (LRT)	24	486	0	0	1	1
Global (z-scoring)	24	217	10	0	1	0.956
Global (LRT)	24	223	4	0	1	0.982

Table 4.1: Some table.

Conclusion and Recommendations

Some text..

5.1 Conclusion

Text..

5.2 Recommendations

Text..

References

Yamato, J., Ohya, J., & Ishii, K. (1992). Recognizing human action in time-sequential images using hidden Markov model. In *International Conference on Computer Vision* and Pattern Recognition (CVPR) (pp. 379–385).

Appendix A

.. TITLE HERE ..

Section Name

Figure A.1 shows something.

Some text ..

Figure A.1: CCTV monitoring room. Reprinted from the Twenty First Security Web site (http://www.twentyfirstsecurity.com.au/).