§ Linear Algreba §

Problem 1: Basic Vector Operations

(1) $\|\mathbf{a}\|_{2}=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}, \quad\|\mathbf{b}\|_{2}=\sqrt{(-8)^{2}+1^{2}+2^{2}}=\sqrt{69}$.
(2) $\|\mathbf{a}-\mathbf{b}\|_{2}=\sqrt{9^{2}+1^{2}+1^{2}}=\sqrt{83}$.
(3) \mathbf{a} and \mathbf{b} are orthogonal.

Proof. The inner product of vectors \mathbf{a} and \mathbf{b} is

$$
\begin{equation*}
\langle\mathbf{a}, \mathbf{b}\rangle=\mathbf{a}^{T} \mathbf{b}=1 \times(-8)+2 \times 1+3 \times 2=0 \tag{1.1}
\end{equation*}
$$

therefore \mathbf{a} and \mathbf{b} are orthogonal.

Problem 2: Basic Matrix Operations

According to the consensus, the matrix notation should be the bold upper-case letter like \mathbf{A} or \boldsymbol{A}, not A.
(1)

$$
\begin{align*}
& {\left[\mathbf{A}, \mathbf{I}_{3}\right]=\left[\begin{array}{lll:lll}
1 & -3 & 3: 1 & 0 & 0 \\
3 & -5 & 3: 0 & 1 & 0 \\
6 & -6 & 4: 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrr:rrr}
1 & -3 & 3 \vdots & 1 & 0 & 0 \\
0 & 4 & -6 & -3 & 1 & 0 \\
0 & 12 & -14 & -6 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & -3 & 3 & 1 & 0 & 0 \\
0 & 4 & -6 & -3 & 1 & 0 \\
0 & 0 & 4 & 3 & -3 & 1
\end{array}\right]} \\
& \sim\left[\begin{array}{rrrrrr}
1 & -3 & 0 & -\frac{5}{4} & \frac{9}{4} & \frac{3}{4} \\
0 & 4 & 0 & \frac{3}{2} & -\frac{7}{2} & -\frac{3}{2} \\
0 & 0 & 1 \vdots & \frac{3}{4} & -\frac{3}{4} & \frac{1}{4}
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 0 & 0 & -\frac{1}{8} & -\frac{3}{8} & \frac{3}{8} \\
0 & 1 & 0 & \vdots & \frac{3}{8} & -\frac{7}{8} \\
\frac{3}{8} \\
0 & 0 & 1 \vdots & \frac{3}{4} & -\frac{3}{4} & \frac{1}{4}
\end{array}\right], \tag{2.1}
\end{align*}
$$

where \mathbf{I}_{3} is the 3×3 identity matrix. Therefore we have

$$
\mathbf{A}^{-1}=\left[\begin{array}{rrr}
-\frac{1}{8} & -\frac{3}{8} & \frac{3}{8} \tag{2.2}\\
\frac{3}{8} & -\frac{7}{8} & \frac{3}{8} \\
\frac{3}{4} & -\frac{3}{4} & \frac{1}{4}
\end{array}\right] .
$$

The determinant of matrix \mathbf{A} can be calculated as

$$
\operatorname{det}(\mathbf{A})=1 \times\left|\begin{array}{cc}
-5 & 3 \tag{2.3}\\
-6 & 4
\end{array}\right|-(-3) \times\left|\begin{array}{ll}
3 & 3 \\
6 & 4
\end{array}\right|+3 \times\left|\begin{array}{ll}
3 & -5 \\
6 & -6
\end{array}\right|=1 \times(-2)+3 \times(-6)+3 \times 12=16,
$$

where $|\cdot|$ denotes the determinant.
(2) The rank of matrix \mathbf{A} is 3 because as is shown in Eq. (2.2) the matrix \mathbf{A} is invertible.
(3) The trace of matrix \mathbf{A} is

$$
\begin{gather*}
\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{3} a_{i i}=1+(-5)+4=0 . \tag{2.4}\\
\mathbf{A}+\mathbf{A}^{T}=\left[\begin{array}{lll}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right]+\left[\begin{array}{rrr}
1 & 3 & 6 \\
-3 & -5 & -6 \\
3 & 3 & 4
\end{array}\right]=\left[\begin{array}{rrr}
2 & 0 & 9 \\
0 & -10 & -3 \\
9 & -3 & 8
\end{array}\right] . \tag{2.5}
\end{gather*}
$$

(4)

$$
\mathbf{A}+\mathbf{A}^{T}=\left[\begin{array}{lll}
1 & -3 & 3 \tag{2.6}\\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right]+\left[\begin{array}{rrr}
1 & 3 & 6 \\
-3 & -5 & -6 \\
3 & 3 & 4
\end{array}\right]=\left[\begin{array}{rrr}
2 & 0 & 9 \\
0 & -10 & -3 \\
9 & -3 & 8
\end{array}\right] .
$$

(5) A is not an orthogonal matrix.

Proof. Assume A is an orthogonal matrix, therefore

$$
\begin{equation*}
\mathbf{A A}^{T}=\mathbf{I}_{3}, \tag{2.7}
\end{equation*}
$$

Take the determinant at both side, it can be derived that

$$
\begin{equation*}
|\operatorname{det}(\mathbf{A})|=\sqrt{|\mathbf{A}|\left|\mathbf{A}^{T}\right|}=\left|\operatorname{det}\left(\mathbf{I}_{3}\right)\right|=1 \tag{2.8}
\end{equation*}
$$

which contradicts with Eq. (2.3). Therefore, the assumption is false.
(6) Let $f(\lambda)$ be the characteristic function of matrix \mathbf{A} and

$$
f(\lambda)=\left|\begin{array}{ccc}
\lambda-1 & 3 & -3 \tag{2.9}\\
-3 & \lambda+5 & -3 \\
-6 & 6 & \lambda-4
\end{array}\right|=(\lambda-4)(\lambda+2)^{2}
$$

therefore the eigenvalues are $\lambda_{1}=4, \lambda_{2}=\lambda_{3}=-2$. Let the corresponding eigenvectors be $\boldsymbol{\alpha}_{i}, i=1,2,3$.

$$
\begin{equation*}
\left(\mathbf{A}-\lambda_{i} \mathbf{I}_{3}\right) \boldsymbol{\alpha}_{i}=\mathbf{0}, \quad i=1,2,3 \tag{2.10}
\end{equation*}
$$

and the corresponding eigenvectors are

$$
\boldsymbol{\alpha}_{1}=\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right]^{T}, \quad \boldsymbol{\alpha}_{2,3}=\left[\begin{array}{lll}
1 & 1+c_{2,3} & c_{2,3} \tag{2.11}
\end{array}\right]^{T}
$$

where $c_{2,3} \in \mathbb{R}$. Without loss of generality, we take $c_{2}=0$ and $c_{3}=-1$, and we have $\boldsymbol{\alpha}_{2}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{T}$ and $\boldsymbol{\alpha}_{2}=\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]^{T}$.
(7) Use the result from Eq. (2.9), the matrix \mathbf{A} can be diagonalized as

$$
\boldsymbol{\Lambda}=\left[\begin{array}{rrr}
4 & 0 & 0 \tag{2.12}\\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

(8) The $\ell_{2,1}$ norm of \mathbf{A} is

$$
\begin{equation*}
\|\mathbf{A}\|_{2,1}=\sum_{i=1}^{3} \sqrt{\sum_{j=1}^{3} a_{i j}^{2}}=\sqrt{46}+\sqrt{70}+\sqrt{34} \approx 20.98 \tag{2.13}
\end{equation*}
$$

and the Frobenius norm of \mathbf{A} is

$$
\begin{equation*}
\|\mathbf{A}\|_{F}=\sqrt{\sum_{i, j=1,2,3} a_{i j}^{2}}=\sqrt{150}=5 \sqrt{6} \approx 12.247 \tag{2.14}
\end{equation*}
$$

(9) The nuclear norm of \mathbf{A} is

$$
\begin{equation*}
\|\mathbf{A}\|_{*}=\operatorname{tr}\left(\sqrt{\mathbf{A} \mathbf{A}^{*}}\right)=\sum_{i=1}^{3} \sigma_{i}(\mathbf{A}) \approx 14.728 \tag{2.15}
\end{equation*}
$$

and the spectral norm of \mathbf{A} is

$$
\begin{equation*}
\|\mathbf{A}\|_{2}=\max \sigma_{i}(\mathbf{A}) \approx 12.065 \tag{2.16}
\end{equation*}
$$

MATLAB Code for Check

```
A = [1, -3, 3; 3, -5, 3; 6, -6, 4]; % define the matrix A
inv(A) % calculate and print the inverse of A
det(A) % the determinant of A
rank(A) % the rank of A
trace(A) % the trace of A
A + A., % the sum of A and the transpose of A
sum(sum(A * A.' ~= eye(3))) % check if A is orthogonal
[X, D] = eig(A) % the eigenvectors and the corresponding eigenvalues of A
sum(sqrt(sum(A . - 2))) % l-2,1 norm of A
norm(A, 'fro') % Frobenius norm of A
sum(svd(A)) % nuclear norm of A
max(svd(A)) % spectral norm of A
```


Problem 3: Linear Equations

(1) It is evident to solve the linear equation

$$
\left\{\begin{array}{l}
x_{1}=-1 \tag{3.1}\\
x_{2}=0 \\
x_{3}=1
\end{array}\right.
$$

(2) Let

$$
\mathbf{A}=\left[\begin{array}{rrr}
2 & 2 & 3 \tag{3.2}\\
1 & -1 & 0 \\
-1 & 2 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right]
$$

and we have $\mathbf{A x}=\mathbf{b}$ as

$$
\left[\begin{array}{rrr}
2 & 2 & 3 \tag{3.3}\\
1 & -1 & 0 \\
-1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right] .
$$

(3) Since there is a unique solution shown in Eq. (3.1), we know

$$
\begin{equation*}
\operatorname{rank}(\mathbf{A})=3 \tag{3.4}
\end{equation*}
$$

(4)

$$
\begin{align*}
& {\left[\mathbf{A}, \mathbf{I}_{3}\right]=\left[\begin{array}{rrr:rrr}
2 & 2 & 3 & 1 & 0 & 0 \\
1 & -1 & 0 & \vdots & 0 & 1 \\
-1 & 2 & 1 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrr:rrr}
2 & 2 & 3 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{rrr:rrr}
1 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
1 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1
\end{array}\right]} \\
& \sim\left[\begin{array}{rrr:rrr}
1 & 1 & \frac{3}{2} \vdots & \frac{1}{2} & 0 & 0 \\
0 & -2 & -\frac{3}{2} \vdots & -\frac{1}{2} & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 1 & \frac{3}{2} \vdots & \frac{1}{2} & 0 & 0 \\
0 & -1 & -\frac{3}{4} \vdots & -\frac{1}{4} & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{4} \vdots & -\frac{1}{4} & \frac{3}{2} & 1
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 1 & 0 & 2 & -9 & -6 \\
0 & -1 & 0 & -1 & 5 & 3 \\
0 & 0 & 1 & -1 & 6 & 4
\end{array}\right] \tag{3.5}\\
& \sim\left[\begin{array}{rrr:rrr}
1 & 0 & 0 & 1 & -4 & -3 \\
0 & 1 & 0 & 1 & -5 & -3 \\
0 & 0 & 1 & -1 & 6 & 4
\end{array}\right],
\end{align*}
$$

therefore the inverse of \mathbf{A} is

$$
\mathbf{A}^{-1}=\left[\begin{array}{rrr}
1 & -4 & -3 \tag{3.6}\\
1 & -5 & -3 \\
-1 & 6 & 4
\end{array}\right]
$$

The determinant of \mathbf{A} can be calculated as

$$
\operatorname{det}(\mathbf{A})=2 \times\left|\begin{array}{rr}
-1 & 0 \tag{3.7}\\
2 & 1
\end{array}\right|-2 \times\left|\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right|+3 \times\left|\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right|=2 \times(-1)-2 \times 1+3 \times 1=-1
$$

(5) As is shown in Eq. (3.4), \mathbf{A} is invertible and with the result in Eq. (3.6)

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}=\left[\begin{array}{rrr}
1 & -4 & -3 \tag{3.8}\\
1 & -5 & -3 \\
-1 & 6 & 4
\end{array}\right]\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]
$$

and it is exactly the same result with Eq. (3.1).
(6) The inner product

$$
\begin{equation*}
\langle\mathbf{x}, \mathbf{b}\rangle=\mathbf{x}^{T} \mathbf{b}=1 \times 1+0 \times(-1)+1 \times 2=1 \tag{3.9}
\end{equation*}
$$

and the outer product is

$$
\mathbf{x} \otimes \mathbf{b}=\mathbf{x b}^{T}=\left[\begin{array}{r}
-1 \tag{3.10}\\
0 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & -1 & 2
\end{array}\right]=\left[\begin{array}{rrr}
-1 & 1 & -2 \\
0 & 0 & 0 \\
1 & -1 & 2
\end{array}\right] .
$$

(7) $\|\mathbf{b}\|_{1}=|1|+|-1|+|2|=4, \quad\|\mathbf{b}\|_{2}=\sqrt{1^{2}+(-1)^{2}+2^{2}}=\sqrt{6}, \quad\|\mathbf{b}\|_{\infty}=\max \{|1|,|-1|,|2|\}=2$.
(8) Let $\mathbf{y}=\left[\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right]^{T}$, we have

$$
\mathbf{y}^{T} \mathbf{A} \mathbf{y}=\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left[\begin{array}{rrr}
2 & 2 & 3 \tag{3.11}\\
1 & -1 & 0 \\
-1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=2 y_{1}^{2}-y_{2}^{2}+y_{3}^{2}+3 y_{1} y_{2}+2 y_{2} y_{3}+2 y_{1} y_{3}
$$

and

$$
\nabla \mathbf{y} \mathbf{y}^{T} \mathbf{A} \mathbf{y}=\left[\begin{array}{c}
\frac{\partial}{\partial y_{1}} \mathbf{y}^{T} \mathbf{A y} \tag{3.12}\\
\frac{\partial}{\partial y_{2}} \mathbf{y}^{T} \mathbf{A y} \\
\frac{\partial}{\partial y_{3}} \mathbf{y}^{T} \mathbf{A} \mathbf{y}
\end{array}\right]=\left[\begin{array}{l}
4 y_{1}+3 y_{2}+2 y_{3} \\
3 y_{1}-2 y_{2}+2 y_{3} \\
2 y_{1}+2 y_{2}+2 y_{3}
\end{array}\right]
$$

(9) The equation $\mathbf{A}_{1} \mathbf{x}=\mathbf{b}_{1}$ can be represented as

$$
\left[\begin{array}{rrr}
2 & 2 & 3 \tag{3.13}\\
1 & -1 & 0 \\
-1 & 2 & 1 \\
-1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
2 \\
2
\end{array}\right]
$$

(10) $\operatorname{rank}\left(\mathbf{A}_{1}\right)=3$.

Proof. On one hand, $\operatorname{rank}\left(\mathbf{A}_{1}\right) \geq \operatorname{rank}(\mathbf{A})=3$ which is shown in Eq. (3.4). On the other hand, $\operatorname{rank}\left(\mathbf{A}_{1}\right) \leq$ $\min \{3,4\}=3$. Therefore, $\operatorname{rank}\left(\mathbf{A}_{1}\right)=3$. We can also find the first three equations are linearly independent while the last equation is actually the same with the third equation which makes it meaningless.

(11) Yes.

Proof. Since $\operatorname{rank}\left(\mathbf{A}_{1}\right)=\|\mathbf{x}\|_{0}$, i.e. rank of \mathbf{A}_{1} is equal to the dimension of \mathbf{x}, the formula can be solved with a unique solution the same as Eq. (3.1).

