[PROJECT TITLE]

A Dissertation Submitted
in Partial Fulfilment of the Requirements
for the Degree of
\section*{MASTER OF SCIENCE}

in
[Department Name]
by
[Full Name]
(Roll No. [Roll No.])

THIRUVANANTHAPURAM
to
SCHOOL OF [DEPARTMENT NAME]
INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH
THIRUVANANTHAPURAM - 695 551, INDIA
February 2024

DECLARATION

I, [Full Name] (Roll No: [Roll Number]), hereby declare that, this report entitled "[Project Title]" submitted to Indian Institute of Science Education and Research Thiruvananthapuram towards the partial requirement of Master of Science in [Department Name], is an original work carried out by me under the supervision of [Project Guide(s)] and has not formed the basis for the award of any degree or diploma, in this or any other institution or university. I have sincerely tried to uphold academic ethics and honesty. Whenever a piece of external information or statement or result is used then, that has been duly acknowledged and cited.

Thiruvananthapuram - 695551
[Full Name]

February 2024

CERTIFICATE

This is to certify that the work contained in this project report entitled "[Project Title]" submitted by [Full Name] (Roll No: [Roll Number]) to Indian Institute of Science Education and Research, Thiruvananthapuram towards the partial requirement of [Master of Science/ Doctor of Philosophy] in [Department Name] has been carried out by [him/her/them] under my supervision and that it has not been submitted elsewhere for the award of any degree.

ACKNOWLEDGEMENT

[Sample:] I thank everyone who has assisted me in seeing this project through to its completion. I would like to first express my profound gratitude and deepest regards to [Project Guide(s)], IISER Thiruvananthapuram, and sincerely wish to acknowledge [his/her/their] vision, guidance, valuable feedback and constant support throughout the duration of this project.

I am indebted to [Insert Names] for their steadfast encouragement and time. I am lastly grateful to the Indian Institute of Science Education and Research Thiruvananthapuram for providing the necessary resources and facilities to complete this project to the best of my ability.

Thiruvananthapuram-695551
[Full Name]

February 2024

ABSTRACT

Name of the student: [Full Name]
Degree for which submitted: [M.Sc./Ph.D.]
Department: School of [Dept.]
Thesis title: [Project Title]
Thesis supervisor: [Project Supervisor]
Date of thesis submission: February 2024

The main aim of the project \qquad

Keywords:

[Insert Keywords]

Contents

List of Figures viii
List of Tables ix
1 Introduction 1
1.1 Section-1 Name 1
1.2 Section-2 Name 3
1.2.1 This is a Subsection 4
1.3 Sample Question and Proof 5
Appendices 8
A Long Appendix Title Here 8
A. 1 First Appendix Section 8
A.1.1 First Appendix Subsection 8

Bibliography 9

List of Figures

1.1 3D Cone designed by Gene R. using TikZ package, see Images/Figures/3D_Cone.tex for code
 4

List of Tables

Notations and Abbreviations

No notation is used in this document. No abbreviations have been used either.

Chapter 1

Introduction

Introductory lines...

1.1 Section-1 Name

Some text here ...

Definition 1.1.1. Some definition....

Theorem 1.1.2. Some theorem.......

Proof. Proof is as follows....

Corollary 1.1.3. A corollary to the theorem is....

Remark 1.1.4. Some remark.......

Equations can be typed as follows:

$$
\begin{equation*}
f(x)=\frac{x^{2}-5 x+6}{\left(e^{x}-2\right) / 10}=10 \frac{(x-2)(x-3)}{e^{x}-2} \tag{1.1}
\end{equation*}
$$

All elements can be referred to after assigning them a label. Labels follow the format \label\{label_name\}, whereas referral commands include \eqref \{label_name\} for equations like the one above (1.1) and \ref\{label_name\} for objects apart from equations, such as the theorem previously mentioned (Theorem 1.1.2). Use the tilde $\operatorname{sign}(\sim)$ to create non-breakable spaces.

In the case of aligning a stack of equations, you may proceed as given below.

$$
\text { Array in Math Mode }\left\{\begin{align*}
-\Delta u+\lambda u & =|u|^{p-2}, & & \text { in } \Omega \tag{1.2}\\
u & \geq 0, & & u \in H_{0}^{1}(\Omega)
\end{align*}\right.
$$

Using array in math mode or eqnarray is a quick and easy way to get the most customisable equation output but is outdated and prone to errors, especially for longer equations. Use of alternate multiline equation environments like multiline(*), $\operatorname{align}\left({ }^{*}\right)$, gather $\left({ }^{*}\right)$ or split in any math-mode environment is recommended.

$$
\begin{array}{rlrl}
g(\theta) & =i \theta & =(i \theta) * \ln e \\
& =\ln \left(e^{i \theta}\right) & & =\ln (\cos \theta+i \sin \theta) \tag{1.4}
\end{array}
$$

1.2 Section-2 Name

This is how matrices in $\mathrm{ET}_{\mathrm{EX}}$ look:

$$
\begin{aligned}
\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right) \times\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right) & =\left(\begin{array}{cc}
\sin ^{2} \theta-\cos ^{2} \theta & 2 \cos \theta \sin \theta \\
-2 \cos \theta \sin \theta & -\cos ^{2} \theta+\sin ^{2} \theta
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\cos 2 \theta & \sin 2 \theta \\
-\sin 2 \theta & -\cos 2 \theta
\end{array}\right)
\end{aligned}
$$

The brackets of a given matrix depend on the type of matrix called.

Similarly, here is a quick truth table:

P	Q	$\neg P$	$\neg P \rightarrow(P \vee Q)$
T	T	F	T
T	F	F	T
F	T	T	T
F	F	T	F

Remark 1.2.1. Defining a table as such does not count in the LoT; use the tabular environment within a table or other variants instead.

Remark 1.2.2. You can cite sources in the footer as so ${ }^{1}$. Citations are read from the ref.bib file and are displayed at the end. As utilizing the verbose style for the biblatex package makes calling regular cites via \cite\{source_name\} impractical, it must be disabled before switching to using regular in-line citations (displayed as [\#]).

[^0]

Figure 1.1: 3D Cone designed by Gene R. using TikZ package, see Images/Figures/3D_Cone.tex for code

1.2.1 This is a Subsection

This is a Subsubsection

Subsubsections do not appear in the ToC and lack numbering ${ }^{2}$. Similar to skipping equation numbering, you can skip section numbering (as well as with subsections) and remove mentions from the ToC using \section*\{section_name $\}$.

Theorem 1.2.3. Some theorem.......

Proof. The proof is as follows...

[^1]Remark 1.2.4. Though the figure is called for after Theorem 1.2.3 in the TeX script, the figure appears above it. This is because \begin\{figure\}[parameter] takes } a float specifier/position parameter with default values tbp, meaning the position priority order is top, bottom, then next page.

1.3 Sample Question and Proof

Suppose A_{i} is a connected subset of a topological space X for $i=1, \ldots, n$, and $A_{i} \cap A_{i+1} \neq \phi \quad \forall i \in\{1,2, \ldots, n-1\}$. Prove that $A=\cup_{i=1}^{n} A_{i}$ is connected.

Proof by Contradiction. Assume $A=\cup_{i=1}^{n} A_{i}$ is instead disconnected, $\Longrightarrow \therefore A$ can be represented as the union of (at least) two disjoint, non-empty, relatively open subsets of A, of which let us consider any two connected subsets X and Y. Now, upon taking any element $x \in X$, as well as $y \in Y$, we can say that $x \in A_{j}$ and $y \in A_{k}$ for some $j, k \in 1,2, \ldots, n-1$. Without loss of generality, let $j \leq k$. Now see that

$$
\begin{gather*}
\because A_{l} \cap A_{l+1} \neq \phi \quad \forall l \in\{1,2, \ldots, n-1\} \\
\Rightarrow \cup_{i=j}^{l} A_{i} \cap A_{l+1} \neq \phi \quad \forall l \in\{j, j+1, \ldots, k-1\} \tag{1.5}\\
\Rightarrow \cup_{i=j}^{l} A_{i} \text { is a connected subset of } X \quad \forall l \in\{j, j+1, \ldots, k\} \tag{1.6}
\end{gather*}
$$

Hence, consider the union $\cup_{i=j}^{k} A_{i}$ which now contains both x and y and is connected throughout (as each A_{i} is a connected subset and (1.3)) which is hence a contradiction as X and Y are supposed to be disjoint. Therefore, $A=\cup_{i=1}^{n} A_{i}$ is in fact connected.

Remark 1.3.1. You may have slight spacing issues within your equations (particularly with the \exists sign), in which case you can use blank characters such as $\backslash ., \backslash$, and \! for a quick fix. Larger spaces can be called with \quad or \qquad.

Appendices

Appendix A

Long Appendix Title Here

Write your Appendix content here. Sections and subsections can be used as well.

A. 1 First Appendix Section

A.1. 1 First Appendix Subsection

First Appendix Subsubsection

Appendices will show up in the ToC numbered as letters. This is of course totally customizable, please refer to the CTAN documentation (https://ctan.org/pkg/ appendix?lang=en) for further clarity on the same.

Bibliography

Andrews, K. and B. Rajiv. "On some applications of eigenvalues of Toeplitz matrices". In: Journal of Mathematical Analysis and Applications 56.2 (2007), pp. 237239.

Chang, C. C. "Algebraic analysis of many valued logics". In: Transactions of American Mathematical Society 88 (1958), pp. 467-490.

Elmoataz, Abderrahim, Matthieu Toutain, and Daniel Tenbrinck. "On the p-laplacian and ∞-laplacian on graphs with applications in image and data processing". In: SIAM Journal on Imaging Sciences 8 (4 Oct. 2015), pp. 2412-2451. ISSN: 19364954. DOI: 10.1137/15M1022793.

Gerla, B. "Automata over MV-algebras". In: ISMVL '04: Proceedings of the 34th International Symposium on Multiple-Valued Logic. Washington, DC, USA: IEEE Computer Society, 2004, pp. 49-54.

Golub, G.H. and C.F. Van Loan. Matrix Computations. Second Edition. The John Hopkins University Press, 1989, pp. xiii +283.

[^0]: ${ }^{1}$ G.H. Golub and C.F. Van Loan. Matrix Computations. Second Edition. The John Hopkins University Press, 1989, pp. xiii +283.

[^1]: ${ }^{2}$ Regular footnotes work as well. Quickly reference a simple fact in minimal lines.

