

# Department of Electronics \& Telecommunication Engineering Rajshahi University of Engineering \& Technology 

# Laboratory Report on ETEXXXX (Sessional Based on ETEXXXX) 

Submitted by<br>Mr. Xyz<br>Roll No. XXXXXX<br>Session: 20XX-XX

Submitted to
Mr. PQR
Assistant Professor
Department of Electronics \& Telecommunication Engineering

## Contents

List of Experiments ..... i
Experiment 1: Working with 8086 Assembly Language Programming ..... 1
Experiment 2: Verification of Ohm's Law ..... 7
Experiment 3: Working with Matlab Codes ..... 12
Experiment 4: Working with Python Codes ..... 15

Department of Electronics \& Telecommunication Engineering Rajshahi University of Engineering \& Technology

Laboratory Report on<br>ETEXXXX (Sessional Based on ETEXXXX)

## Experiment 1

## Working with 8086 Assembly Language Programming

## Submitted by:

Mr. Xyz
Roll No. XXXXXX
Session: 20XX-XX

Date of Experiment : 24/02/2024
Date of Submission : 28/02/2024

## Report Writing

ExcellentGoodAveragePoor(Teacher's Section)
Lab VivaExcellentGoodAverage
Signature

## Submitted to:

Mr. PQR
Assistant Professor
Dept. of ETE, RUET

Date of Submission : $28 / 02 / 2024$

### 1.1 Objectives

The main objectives of this experiment are

- To learn about how to take a single character input from a keyboard and display it.
- ...


### 1.2 Introduction

Write your introduction here.

### 1.3 Required Softwares

1. emu8086.

### 1.4 Problem A

Program to Take a Character Input from Keyboard and Display it at the Beginning of the Next Line.

### 1.4.1 Program

Program 1.1: Code for Problem A
.MODEL SMALL
.STACK 100 H
. CODE
MAIN PROC
MOV AH,1
INT 21 H
MOV BL,AL

MOV AH,2
MOV DL, ODH

INT 21 H
MOV DL, OAH
INT 21 H

MOV DL,BL
INT 21 H

MOV AH,4CH
INT 21 H
MAIN ENDP
22 END MAIN

### 1.4.2 Output



Fig 3.1: Output of Problem A.

### 1.5 Problem B

Program to Display a String Output.

### 1.5.1 Program

## Program 1.2: Code for Problem B

```
.MODEL SMALL
.STACK 100H
.DATA
MSG DB 'JHALOK$'
. CODE
MAIN PROC
    MOV AX,@DATA
    MOV DS,AX
    LEA DX, MSG
    MOV AH, 9
    INT 21h
    MOV AH,4CH
    INT 21h
MAIN ENDP
END MAIN
```


### 1.5.2 Output



Fig 3.2: Output of Problem B .

### 1.6 Pasting Direct Code

Program 1.3: Sample 8086 assembly code

```
; This is a sample 8086 assembly code
.MODEL SMALL
.STACK 100H
.DATA
    msg DB 'Hello, world!', '$'
. CODE
main PROC
    MOV AX, @DATA
    MOV DS, AX
    MOV AH, 9
    MOV DX, OFFSET msg
    INT 21H
    MOV AH, 4CH
    INT 21H
main ENDP
END main
```


### 1.7 Conclusions and Discussions

Write your conclusions here.

## Learn ETEX

## Click Here to learn $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$

or go to
https://www. youtube.com/watch?v=Kxl1WS7SG7A\&t=10s

## If you need any citations, then follow this:

An article [1]
A book [2]
A series [3]
Someone's thesis [4]
Some technical report [5]
A collection [6]
Visited website [7]
Accepted for publication [8]
Submitted for publication [9]
Not published [10]
Conversation [11]

## References

[1] A. B. Cummings, D. Eftekhary, and F. G. House, "The accurate determination of college students' coefficients of friction," Journal of Sketchy Physics, vol. 13, no. 2, pp. 46-129, 2003.
[2] I. J. Kuss, On the Importance of Kissing Up to Your Boss, 5th ed. Cambridge MA: Dilbert Books, 1995.
[3] L. M. Napster, Mathematical Theory of Efficient Piracy, ser. Lecture Notes in Mathematics. New York NY: Springer Verlag, 1998, vol. 3204.
[4] O. P. Qwerty, "History of the goofy layout of keyboards," Ph.D. dissertation, Podunk IN, 1996.
[5] R. Swearingen, "Morpholoty and syntax of british sailors' english," New York NY, Tech. Rep., 1985.
[6] T. Upsilon, "Obscure greek letters and their meanings in mathematics and the sciences," in Proceedings of the seventh international trivia conference, V. W. Xavier, Ed. Philadelphia PA: Last Resort Publishers, 1987, pp. 129-158.
[7] J. Tetazoo, "A brief guide to recreational pyromania," Available at http://www. blowinglotsofweirdstuffup.com/guide.html (2005/06/12).
[8] J. Mentor, "Behavior of small animals on fire," (in press).
[9] _-, "Behavior of small animals on fire," 2012, unpublished Manuscript.
[10] ——, "Behavior of small animals on fire," 2012, unpublished Manuscript.
[11] S. Freud, Personal conversation, July 2012.

Department of Electronics \& Telecommunication Engineering Rajshahi University of Engineering \& Technology

Laboratory Report on ETEXXXX (Sessional Based on ETEXXXX)



### 2.1 Objectives

The main objectives of this experiment are

- To understand the importance and application of Ohm's Law
- To understand the application of Ohm's law to a variety of situations.
- To be able to plot Ohm's law (voltage versus current).


### 2.2 Theory

In 1826 George Simon Ohm stated a law as " the current in a metal conductor which is maintained at a constant temperature is proportional to the potential difference between the terminals." If the potential at point $A\left(V_{A}\right)$ is greater than the potential at point $B\left(V_{B}\right)$, then the potential difference between points $A$ and $B$ can be referred to as $V=V_{A B}=$ $V_{A}-V_{B}$. Now, if the current flowing through the conductor is $I$, then according to Ohm's law, we have

$$
\begin{align*}
& I \infty V \\
=> & I=G V \\
=> & I=\frac{V}{R}, \tag{2.1}
\end{align*}
$$

where $G$ is a proportional constant and is called the conductance of the conductor and $R=1 / G, R$ is referred to as the resistance of the conductor. The final equation states a relation between the potential difference, current, and resistance. A complete mathematical statement of Ohm's law would be

$$
\begin{equation*}
R=\frac{V}{I}=K, \tag{2.2}
\end{equation*}
$$

where $K$ is a constant if the temperature remains constant.

### 2.3 Required Apparatus

1. Ammeter (1 pcs: $0-5 \mathrm{~A}$ )
2. Voltmeter (1 pcs: 0-600V)
3. Resistor (2 pcs: $25 \Omega$ )


Figure 2.1: Current flowing through a conductor.
4. DC voltage source ( $0-100 \mathrm{~V}$ )
5. Connecting wires

### 2.4 Circuit Diagram



Figure 2.2: Circuit connection for verification of Ohm's law by varying (a) supply voltage and (b) variable resistance.

### 2.5 Procedure

### 2.5.1 Varying Supply Voltage

- The circuit was first connected similarly to fig. 2.2(a).
- Voltage source was then switched on and the readings of the ammeter and voltmeter were noted in Table 2.1.
- Next, the supply was disconnected, the value of supply voltage was changed, and the new readings of the ammeter and the voltmeter were taken and noted in Table 2.1.
- The process was repeated at least 5 times.
- The value of resistance was calculated from the values of the reading of the ammeter and the voltmeter using (2.2) and then compared with the test resistance.
- Finally, the values of the current and the voltage were plotted on graph paper.


### 2.5.2 Varying Variable Resistance

- The circuit was first connected similarly to fig. 2.2(b).
- Voltage source was then switched on and the readings of the ammeter and voltmeter were noted in Table 2.3.
- Next, the value of resistance was changed, and the new readings of the ammeter and the voltmeter were taken and noted in Table 2.3.
- The process was repeated at least 5 times.
- The value of resistance was calculated from the values of the reading of the ammeter and the voltmeter using (2.2) and then compared with the test resistance.
- Finally, the values of the current and the voltage were plotted on graph paper.


### 2.6 Data Table

Table 2.1: Verification of Ohm's law by varying supply voltage

| SI No | Supply Voltage <br> E <br> (volt) | Current <br> I <br> $(\mathrm{amp})$ | Voltage <br> V <br> $(\mathrm{volt})$ | Resistance <br> $R_{1}$ <br> $(\Omega)$ | Resistance <br> $R_{\text {calc }}=\frac{V}{I}$ <br> $(\Omega)$ | Error <br> $\% e$$R_{1}-R_{\text {calc }}$ <br> $R_{1}$ <br> $\times 100 \%$ <br> 01$\quad 30$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.60 | 14.8 | 25 | 24.67 |  |  |  |
| 02 | 40 | 0.8 | 19.9 | 25 | 24.90 |  |
| 03 | 50 |  |  | 25 |  |  |
| 04 | 60 |  |  | 25 |  |  |
| 05 | 70 |  |  | 25 |  |  |
| 06 |  |  |  |  |  |  |

Table 2.2: Verification of Ohm's law by varying resistance

| SI No | Supply Voltage <br> E (volt) | Current I (amp) | Voltage V (volt) | Resistance <br> $R_{1}$ <br> ( $\Omega$ ) | Resistance $R_{\text {calc }}=\frac{V}{I}$ <br> ( $\Omega$ ) | $\begin{gathered} \text { Error } \\ \% e=\frac{R_{1}-R_{\text {calc }}}{R_{1}} \\ \times 100 \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | 30 | 0.60 | 14.8 | 25 | 24.67 |  |
| 02 | 40 | 0.8 | 19.9 | 25 | 24.90 |  |
| 03 | 50 |  |  | 25 |  |  |
| 04 | 60 |  |  | 25 |  |  |
| 05 | 70 |  |  | 25 |  |  |
| 06 |  |  |  |  |  |  |

### 2.7 Result

Table 2.3: GENERAL ELECTRIC DIRECT CURRENT GENERATOR

| KW 4 | VOLTS 250 |  |
| :---: | :---: | :---: |
| RPM 1450 | AMP 18 |  |
| FLD AMPS 1.0 AS SH GEN | FLD OHMS 25C 152.8 |  |
| DUTY CONT 60 CRISE | E_NCL DP SERV FACT.1.15 |  |
| SUIT AS SHP | 1500/3000 RPM 240V |  |
| MOD 5CD256G317 | SERXY1-1070 |  |



Figure 2.3: Plotting Ohm's law.

### 2.8 Conclusions and Discussions

Write down your discussions here

## Learn $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$

## Click Here to learn ETEX

or go to
https://www.youtube.com/watch?v=Kxl1WS7SG7A\&t=10s

Department of Electronics \& Telecommunication Engineering Rajshahi University of Engineering \& Technology

Laboratory Report on ETEXXXX (Sessional Based on ETEXXXX)

## Experiment 3 <br> Working with Matlab Codes

Submitted by:<br>Mr. Xyz<br>Roll No. XXXXXX<br>Session: 20XX-XX<br>Submitted to:<br>Mr. PQR<br>Assistant Professor<br>Dept. of ETE, RUET

Date of Experiment : 24/02/2024
Date of Submission : 28/02/2024

| Report Writing | (Teacher's Section) |  | Lab Viva |
| :--- | :--- | :--- | :--- |
| $\quad$ Excellent |  | $\square$ | Excellent |
| $\square \quad$ Good |  | $\square$ | Good |
| $\square \quad$ Average |  | $\square$ | Average |
| $\square$ | Poor | Signature | $\square$ | Poor

### 3.1 MATLAB Code A

Program 3.1: Sample MATLAB code

```
% This is a sample MATLAB code
A = [1, 2, 3; 4, 5, 6; 7, 8, 9];
b = [10; 11; 12];
x = A \ b;
disp(x);
```


### 3.2 MATLAB Code B

Program 3.2: Code for Problem B

```
clc
clear
fx=@(x) x^2-4*x-10;
a=input('a= ');
b=input('b= ');
e=input('e=');
n=input('n= ');
fa=fx(a);
fb=fx(b);
if fa*fb>0
    break
end
c(1) = (a+b)/2;
for k=1:n
    A(k)=a;
    B (k) = b;
    K(k)=k;
    f(k)=fx(c(k));
    if f(k)*fb<0
        a=c(k);
    else
        b=c(k);
    end
    c (k+1) = (a+b)/2;
    s=abs(c(k+1)-c(k));
    if s<=e
```

```
                break;
            end
end
disp(, k a b a+b/2 f(x)')
Z=[ K, A, B, c(1:k), f, ];
disp(Z);
Root=c(k)
```


## Learn ATEX

## Click Here to learn ETEX

or go to
https://www. youtube.com/watch?v=Kxl1WS7SG7A\&t=10s

Department of Electronics \& Telecommunication Engineering Rajshahi University of Engineering \& Technology

Laboratory Report on ETEXXXX (Sessional Based on ETEXXXX)

## Experiment 4 <br> Working with Python Codes

Submitted by:<br>Mr. Xyz<br>Roll No. XXXXXX<br>Session: 20XX-XX<br>Submitted to:<br>Mr. PQR<br>Assistant Professor<br>Dept. of ETE, RUET

Date of Experiment : 24/02/2024
Date of Submission : 28/02/2024

| Report Writing | (Teacher's Section) |  | Lab Viva |
| :--- | :--- | :--- | :--- |
| $\quad$ Excellent |  | $\square$ | Excellent |
| $\square \quad$ Good |  | $\square$ | Good |
| $\square \quad$ Average |  | $\square$ | Average |
| $\square$ | Poor | Signature | $\square$ | Poor

### 4.1 Python Code

Program 4.1: Sample Python code

```
# This is a sample Python code
def hello_world():
    print("Hello, world!")
hello_world()
```


### 4.2 Python Code B

Program 4.2: Code for Problem B

```
# -*_ coding: utf-8 -*_
"""
Created on Tue Mar 22 16:19:50 2022
@author: Arif
" " "
#Import libraries as necessary
import math
import numpy as np
#import xlwt
from xlwt import Workbook
#Take necessary input
#For bisection, two input is required to bracket the root
xl=float(input ('Enter 1st initial value: ')) #1st input
print(xl)
xu=float(input ('Enter 2nd initial value: ')) #2nd input
#computing function values corresponding to initial values
fxl=(667.38/xl)*(1-math.exp (-0.146843*xl)) - 40
fxu=(667.38/xu)*(1-math.exp (-0.146843*xu)) -40
#checking initial input values
if fxl*fxu>0:
    print('Wrong initial input')
```

```
#if the initial input is correct
elif fxl*fxu<0:
    #taking input
    err=float(input('Enter desired percentage relative
    error: '))
    ite=int(input('Enter number of iterations: '))
    #initialization
    x_l=np.zeros([ite])
    x_u=np.zeros([ite])
    x_c=np.zeros([ite])
    f_xl=np.zeros([ite])
    f_xu=np.zeros([ite])
    f_xc=np.zeros([ite])
    rel_err=np.zeros([ite])
    itern=np.zeros([ite])
    #storing initial computed values into array
    x_l [0] =xl
    x_u[0]=xu
    f_xl[0]=fxl
    f_xu[0]=fxu
    #begin iteration
    for i in range(ite):
        #storing the values of iteration
        itern[i]=i+1
        #Bisection Formula
        x_c[i]=(x_l[i]+x_u[i])/2
        f_xl[i]=(667.38/x_l[i])*(1-math.exp(-0.146843*x_l[i
        ]) ) -40
        f_xu[i]=(667.38/x_u[i])*(1-math.exp(-0.146843*x_u[i
        ])) -40
            f_xc[i]=(667.38/x_c[i])*(1-math.exp(-0.146843*x_c[i
        ]) ) -40
            #calculating error
            if i>0:
```

```
        rel_err[i]=((x_c[i]-x_c[i-1])/x_c[i])*100
        #terminate if error criteria meets
        if all ([i>0, abs(rel_err[i])<err]):
        break
        elif f_xc[i]==0:
        break
        if i==ite-1:
        break
        #replacement of the new estimate
        if all ([f_xc[i]>0, f_xl[i]>0]):
        x_l[i+1]=x_c[i]
        x_u[i+1]=x_u[i]
    elif all ([f_xc[i]>0, f_xu[i]>0]):
        x_u[i+1]=x_c[i]
        x_l[i+1]=x_l[i]
        elif all ([f_xc[i]<0, f_xl[i]<0]):
        x_l[i+1]=x_c[i]
        x_u[i+1]=x_u[i]
        elif all ([f_xc[i]<0, f_xu[i]<0]):
        x_u[i+1]=x_c[i]
        x_l[i+1]=x_l[i]
#Writing the results on an excel sheet
#Workbook is created
wb = Workbook()
# add_sheet is used to create sheet.
sheet1 = wb.add_sheet('Sheet 1')
num_of_iter=i
#writing on excel
#sheet1.write(0,2,'The')
sheet1.write(0,3,'Bisection')
sheet1.write(0,4,'Method')
#sheet1.write(0,5,x_c[i])
sheet1.write(1,0,'Number of iteration')
```

```
sheet1.write(1, 1,'x_l')
sheet1.write(1, 2,'x_u')
sheet1.write(1, 3,'f(x_l)')
sheet1.write(1,4,'f(x_u)')
sheet1.write(1, 5,'x_c')
sheet1.write(1,6,'f(x_c)')
sheet1.write(1,7,'Relative error')
#writing values on excel
for n in range(num_of_iter +1):
        sheet1.write(n+2,0,itern[n])
        sheet1.Write(n+2,1, x_l[n])
        sheet1.write(n+2, 2, x_u[n])
        sheet1.write(n+2,3,f_xl[n])
        sheet1.write(n+2,4,f_xu[n])
        sheet1.write(n+2,5, x_c[n])
        sheet1.write(n+2,6,f_xc[n])
        sheet1.write(n+2,7,rel_err[n])
sheet1.write(n+4,2,'The')
sheet1.write(n+4,3,'root')
sheet1.write(n+4,4,'is')
sheet1.write(n+4,5,x_c[i])
#save the excel file
wb.save('bisection.xls')
```


## Learn $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$

## Click Here to learn $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$

or go to
https://www.youtube.com/watch?v=Kxl1WS7SG7A\&t=10s

