演示报告 (内容为示例简述特征向量) 标题小字 (示例全英,可自行修改为中文)

Yi Wang(**姓名**)

数学与统计学院

广东工业大学 Guangdong University of Tech.

2023年10月10日

- 1 图片与枚举示例
- 2 公式显示示例 Vector in Geometry
- 3 公式显示示例 Determinant in Geometry
- 4 公式显示示例 Eigenvalue in Geometry
- 5 参考文献示例 Refference

- 1 图片与枚举示例
- 2 公式显示示例 Vector in Geometry
- 3 公式显示示例 Determinant in Geometry
- 4 公式显示示例 Eigenvalue in Geometry
- 5 参考文献示例 Refference

Review of Higher Algebra

■ Full of matrix

Review of Higher Algebra

- Full of matrix
- No geometric graphics at all

- Full of matrix
- No geometric graphics at all
- Not intuitive

Review of Higher Algebra

- 1 图片与枚举示例
- 2 公式显示示例 Vector in Geometry
- 3 公式显示示例 Determinant in Geometry
- 4 公式显示示例 Eigenvalue in Geometry
- 5 参考文献示例 Refference

Linear Simultaneous Equations

Introduce a linear simultaneous equations

$$\begin{aligned}
x & - 2y &= 1\\ 3x & + 2y &= 11
\end{aligned} \tag{1}$$

Row picture:

$$\begin{array}{|c|c|}\hline x - 2y = 1\\\hline 3x + 2y = 11\\\hline \end{array}$$

Point S = (3, 1) is the solution.

Vector

Column picture:

$$x \begin{bmatrix} 1 \\ 3 \end{bmatrix} + y \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 11 \end{bmatrix} \tag{2}$$

Where we take
$$\begin{bmatrix} -2 \\ 2 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
as vectors,
when $x = 3$, $y = 1$, the $b = \begin{bmatrix} 1 \\ 11 \end{bmatrix}$

- 1 图片与枚举示例
- 2 公式显示示例 Vector in Geometry
- 3 公式显示示例 Determinant in Geometry
- 4 公式显示示例 Eigenvalue in Geometry
- 5 参考文献示例 Refference

Coefficient matrix

$$\left[\begin{array}{cc} 3 & 1 \\ 0 & 2 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} \cdots \\ \cdots \end{array}\right] or \left[\begin{array}{cc} 3 & 1 \\ 0 & 2 \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} \cdots \\ \cdots \end{array}\right]$$

Coefficient matrix $A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$ is also a rectangular matrix.

$$det(A) = \begin{vmatrix} 3 & 1 \\ 0 & 2 \end{vmatrix} = 6$$

Obvious matrix A has two vectors: $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

公式显示示例 Linear transformations

Unit vectors in the 2-dimensional plane are $\hat{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\hat{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

$$a \cdot i + b \cdot j$$

$$= a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} a \\ b \end{bmatrix}$$

 $a \cdot i + b \cdot j$ is a linear transformations. a = 1, b = 1, then area is 1.

also
$$\begin{bmatrix} i & j \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} \implies \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$

Hense, we can tell that

$$\left[\begin{array}{cc} 3 & 1 \\ 0 & 2 \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{cc} 3 & 1 \\ 0 & 2 \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right]$$

Which is actually the original two-dimensional space of the unit vector is linearly transformed. $\rightarrow \times \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$

$$\hat{i} = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \rightarrow \left[\begin{array}{c} 3 \\ 0 \end{array} \right] \quad , \quad \hat{j} = \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \rightarrow \left[\begin{array}{c} 1 \\ 2 \end{array} \right]$$

Area: $1 \rightarrow 6$

000000

Determinant in Geometry

Since
$$\begin{vmatrix} 3 & 1 \\ 0 & 2 \end{vmatrix} = 6$$
, Area: $1 \to 6$

Area scaled by 6 times.

We can conclude that:

The Determinant in Geometry is how much are areas scaled.

- 图片与枚举示例

- 4 公式显示示例 Eigenvalue in Geometry
- 5 参考文献示例 Refference

Vectors remain on their own span

Vectors remain on their own span

 $\overrightarrow{\alpha}$ remains on the line of the x-axis, stretched by a factor of 3.

Vectors remain on their own span

 $\overrightarrow{\beta}$ remains on the line of the x-axis, stretched by a factor of 2.

The other vectors (γ, θ, ω) on the line are also stretched by a factor of

The vector representing these lines are

$$\left[\begin{array}{c}1\\0\end{array}\right], \left[\begin{array}{c}-1\\1\end{array}\right]$$

Eigenvalue & Eigenvector

$$A = \left[\begin{array}{cc} 3 & 1 \\ 0 & 2 \end{array} \right]$$

The vector representing the line is called the eigenvector of the matrix A.

特征向量:
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$

The eigenvalue of the matrix A is just the factor by which it stretched or squashed during the transformation.

特征值:2,3

Eigenvalue & Eigenvector

So maybe you can tell why we can get eigenvalue of matrix from this equation:

$$Ax = \lambda x$$

- 1 图片与枚举示例
- 2 公式显示示例 Vector in Geometry
- 3 公式显示示例 Determinant in Geometry
- 4 公式显示示例 Eigenvalue in Geometry
- 5 参考文献示例 Refference

Refference

■ Introduction to Linear Algebra(Strang)

Refference

■ Introduction to Linear Algebra(Strang)

■ Essense of Linear Algebra @3Blue1Brown

Refference

■ Introduction to Linear Algebra(Strang)

■ Essense of Linear Algebra @3Blue1Brown

• Linear algebra and its applications 4th

Acknowledgements

Thank you for listening!

