A Fun Template

Senan Sekhon

October 4, 2020

Contents

1 Sample Chapter $\quad 2$
1.1 Some Definitions . 2

Conventions

\mathbb{F} denotes either \mathbb{R} or \mathbb{C}.
\mathbb{N} denotes the set $\{1,2,3, \ldots\}$ of natural numbers (excluding 0).

1 Sample Chapter

Let's dive right in!

1.1 Some Definitions

Definition 1.1. The derivative of a function $f: I \rightarrow \mathbb{R}$ at $a \in I$ is given by:

$$
f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

You know those awesome commutative diagrams?

The derivative has nothing to do with them!
Proposition 1.2. If f is differentiable at a, then f is continuous at a.
| Proof. Exercise (but only because this is a template).
The converse of Proposition 1.2 is not true in general.

Examples.

1. $f(x)=|x|$
2. $f(x)= \begin{cases}\sin (x) & x \geq 0 \\ 0 & x<0\end{cases}$

Theorem 1.3. The following statements are true:

1. First statement
2. Second statement

Proof.

1. Trivial.
2. Trivial.

Corollary 1.4. We are both very lucky to have each other as a collaborator.
Proof. We simply note that:

$$
\frac{1}{1}+\frac{1}{1} \gg \frac{1}{1}
$$

\| Remark. This corollary is also obvious from empirical evidence.
Lemma 1.5. $(a+b)^{2}=a^{2}+2 a b+b^{2}$
| Proof. Expand the left side.

Remarks.

1. It's also kind of obvious.
2. No extra points for guessing what $(a-b)^{2}$ is.
| Example. $(2+4)^{2}=2^{2}+2 \cdot 2 \cdot 4+4^{2}=36$
Theorem 1.6 (Pythagoras' Theorem). If c is the hypotenuse of a right triangle and a and b are the other two sides, then $a^{2}+b^{2}=c^{2}$.
| Proof. Draw a picture and convince yourself.
Pythagoras' theorem helps motivate the study of metric spaces, which you can learn about in [1].
A lot of nice integrals can be computed using the residue theorem, see [2, Section 5.2].

A Bonus Material

The talign and talign* environments work like the align and align* environments, except they render equations in inline size. For example, \begin\{align*\}... \end\{align*\} yields: }

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

While \begin\{talign*\}... \end\{talign*\} yields: }

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

As usual, the purpose of $*$ is to prevent numbering of the equation.
Some commands, like \sumn, can be used with or without a starting value (the default starting value is 1). For example, $\$ \backslash$ sumn $\backslash f r a c\{1\}\left\{n^{\wedge} 2\right\} \$$ yields $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, while $\$ \backslash \operatorname{sumn}[69] \backslash f r a c\{1\}\left\{n^{\wedge} 2\right\} \$$ yields $\sum_{n=69}^{\infty} \frac{1}{n^{2}}$. This can be used in inline mode as well as display mode.

References

[1] Senan Sekhon. "Metric and Topological Spaces". Unpublished. 2019.
[2] Joseph L. Taylor. Complex Variables. AMS, 2011. ISBN: 978-0-8218-6901-7

