Thesis Title

A Thesis Submitted for the Partial Fulfillment of the Requirements for the degree of Master of Technology
in

Dept. Name (Specialization: Specialization)

by
John / Jane Doe
Enrollment no.: 20XXYYYXXX

Under the guidance of
Supervisor Name

DEPARTMENT OF DEPT. NAME
INDIAN INSTITUTE OF ENGINEERING SCIENCE AND
TECHNOLOGY, SHIBPUR - 711103

Department of Dept. Name
Indian Institute of Engineering
Science and Technology, Shibpur, India - 711103

CERTIFICATE

This is to certify that we have examined the thesis entitled "Thesis Title", submitted by John / Jane Doe (Roll Number: 20XXYYYXXX), a postgraduate student of Department of Dept. Name in partial fulfillment for the award of degree of Masters in Technology with specialization of Specialization. We hereby accord our approval of it as a study carried out and presented in a manner required for its acceptance in partial fulfillment for the post graduate degree for which it has been submitted. The thesis has fulfilled all the requirements as per the regulations of the institute and has reached the standard needed for submission.

Head of Department
Prof. Susanta Kumar Parui,
Dept. of E.T.C.,
IIEST, Shibpur.

Supervisor
Supervisor Name, Dept. of E.T.C., IIEST, Shibpur.

Examiners:

1.
2.
3.

Place: Shibpur
Date:.

Department of Dept. Name
Indian Institute of Engineering
Science and Technology, Shibpur, India - 711103

CERTIFICATE OF APPROVAL

The forgoing thesis report is hereby approved as a creditable study of "Thesis Title "carried out and presented satisfactorily to warrant its acceptance as a pre-requisite for the Degree of Master of Technology of University. It is understood that by this approval the undersigned do not necessarily approve any statement made, opinion expressed and conclusion drawn there in but approve the progress report only for the purpose for which it is submitted.

Examiners:

1.
2.

Place: Shibpur
3.

Date:..........

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere and deep gratitude to my supervisor, Supervisor Name, Faculty, Department of Dept. Name, for his kind and constant support during my post-graduation study. It has been an absolute privilege to work with Supervisor Name for my master thesis dissertation. His valuable advice, critical criticism and active supervision encouraged me to sharpen my research methodology and was instrumental in shaping my professional outlook.

I also want to express my gratitude towards Prof. Susanta Kumar Parui, Professor \& Head, Dept. of Electronics \& Telecommunication Engineering, IIEST, Shibpur for providing such a wonderful environment filled with continuous encouragement and support. I would also like to thank the entire faculty for their constant encouragement and assistance they have provided me. Last, but definitely not the least, a very special note of thanks to my parents, who have helped me during this entire period directly or indirectly.

ABSTRACT

In recent microprocessors or ASIC chips, the operating frequency is set by the target market.This leads to very tight timing and power constraints for the proposed circuit design. The industrial shift for adopting lower technology nodes also presents a new challenging frontier as transistors get less efficient as they undergo scaling. Analog designers are expected to optimize these conventional designs and yet meet the reduced power constraints and performance metrics imposed by various applications.

Keywords: Level shifter, energy efficient design, ultra low voltage, ULPLS, 22 nm technology.

Contents

1 Introduction 1
1.1 Section 1.1 3
1.1.1 Sub-Section 1.1.1 3
1.1.2 Sub-Section 1.1.1 3
2 Methodology 5
3 Chapter 3 6
4 Chapter 4 7
5 Chapter 5 8
5.1 Summary 8
5.2 Future Work 8
5.2.1 Work Breakdown Structure (WBS) 8
6 Chapter 6 10

List of Figures

1.1 Figure 1.1 . 2
4.1 My caption. 7

List of Tables

1.1 Table Caption . 4
2.1 Table Caption . 5

Chapter 1

Introduction

The environmental impact of global warming has accelerated the interest to adopt non-conventional power generation [1]. There are several promising sustainable energy alternatives, among which the adoption of Thermoelectric (TE) materials to scavenge the by-product heat generation is widely accepted [1]. It is crucial for applications associated with energy harvesting to posses a high figure of merit ZT $(\geq 1)[1$.

The ZT can be related to other thermoelectric parameters by ZT $=\left(\frac{\sigma_{e} \times S_{B}^{2} \times T}{\kappa_{p h}+\kappa_{e}}\right)$, where $\sigma, S_{B}, \kappa_{p h}+\kappa_{e}$, and T are the electrical conductivity, Seebeck coefficient, total thermal conductivity, and temperature value respectively [1].

Experimental and theoretical identification of two dimensional (2D) [1] or three dimensional (3D) efficient TE materials is laborious and time inefficient [1]. It is also a colossal task to compile databases of thermoelectric parameters for various synthesized TE materials and their variations with doping (n-type or p-type) [1]. Computational methods using density functional theory (DFT) are also time consuming and demand high computational complexity for exploring TE materials [1].

Efficient TE materials require a large ZT which in turn requires to maximize the Seebeck coefficient absolute value, minimize the thermal conductivity and possess a high electrical conductivity. Optimizing these parameters is a complicated task as they are inherently dependent and conflicting in nature [1]. Thus, optimizing ZT requires a thorough understanding of these various transport properties and their interrelated material characteristics.

The Seebeck coefficient depends on this energy-dependent conductivity around a fermi window centered about the fermi energy level, which is given by the Mott expression (Eq. 1.1) [1].

$$
\begin{equation*}
S_{B}=\frac{\pi^{2}}{3}\left(\frac{K_{B}^{2} \times T}{q}\right)\left[\frac{d[\ln (\sigma(E))]}{d E}\right]_{E=E_{F}}=\left(\frac{8 \pi^{2} K_{B}^{2} T}{3 q h^{2}}\right) m_{d}^{*}\left(\frac{\pi}{3 n}\right)^{2 / 3} \tag{1.1}
\end{equation*}
$$

where n is the carrier concentration and effective mass m_{d}^{*} of the carrier when present in the conduction band or valence band. This effective mass $\left(m_{d}^{*}\right)$ is obtained from the function of the density of states (DOS) and is thus also known as $m_{D O S}^{*}$ [1]. The underlying assumption for the final closed form expression is the presence of a parabolic band and an energy-independent scattering approximation [1]. The electrical conductivity $\left(\sigma_{e}\right)$ can be approximated by the Drude model in terms of its carrier concentration (n) and mobility (μ) as shown in Eqn. 1.3. Thus, the influence of carrier concentration impacts both the parameters contradictorily as shown in Fig. 1.1.

Figure 1.1: Figure 1.1

$$
\begin{equation*}
\sigma_{e}=n q \mu=\frac{n q^{2} \tau}{m} \tag{1.2}
\end{equation*}
$$

$$
\begin{gather*}
\kappa=\kappa_{p h}+\kappa_{e}=\left(\frac{\pi^{2}}{3}\right)\left(\frac{n K_{B}^{2} T \tau}{m}\right)+L_{n} \times \sigma_{e} T \tag{1.3}\\
L_{n} \approx\left(\frac{\pi^{2}}{3}\right)\left(\frac{K_{B}}{q}\right)^{2} \tag{1.4}
\end{gather*}
$$

1.1 Section 1.1

1.1.1 Sub-Section 1.1.1

content.

1.1.2 Sub-Section 1.1.1

content.

Thesis Title

Material	Crystal	Space Group	Bandgap(ev)	$\begin{aligned} & \text { Direct } \\ & \text { / In- } \\ & \text { direct } \end{aligned}$	$\kappa\left(W m^{-1} k^{-1}\right)$	$\sigma_{e}\left(\times 10^{-3} \mathrm{Scm}^{-1} 1\right)$	ZT(10-4)
xxx	xxx	xxxxx	YYYXXXX ZZZ exp. YYYexp XXXexp,	Direct	ZZ exp,	YY exp,	XX exp,

Chapter 2

Methodology

Table 2.1: Table Caption

Database	Crystal in- formation	Mechanical parameters	Thermodynamic parameters	Electronic parameters
Database 1	Y	Y	Y	Y
Database 2	Y	Y	Y	Y
Database 3	Y	Y	Y	Y
Database 4	Y	Y	Y	Y
Database 5	Y	N	Y	Y

Chapter 3

Chapter 3

- Item1
- Item2
- Item3
- Item4
- Item5
- Item6

Chapter 4

Chapter 4

Figure 4.1: My caption.

Chapter 5

Chapter 5

5.1 Summary

- Item1
- Item2
- Item3
- Item4
- Item5
- Item6

5.2 Future Work

5.2.1 Work Breakdown Structure (WBS)

- Item1
- Item2
- Item3

Thesis Title

- Item4
- Item5
- Item6

Chapter 6

Chapter 6

References

[1] Shreeja Das, Santanu Mahapatra, Jehan Taraporewalla and Dipankar Saha, "Machine learning assisted search of thermoelectic materials with enhanced power factor, figure of merit, and air stability," Workshop on Spintronics and Magnetism on 2D Materials, EPFL, (2021).
[2] Snyder, G., Toberer, E. "Complex thermoelectric materials", Nature Mater 7, 105-114 (2008).
[3] LTspice simuator, Analog devices, available at https://www.analog.com/en/ design-center/design-tools-and-calculators/ltspice-simulator.html
[4] Wang, A. P. Chandrakasan and S. V. Kosonocky, "Optimal supply and threshold scaling for subthreshold CMOS circuits, "Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002, 2002, pp. 7-11, doi: 10.1109/ISVLSI.2002.1016866.

APPENDIX-A: Guide

APPENDIX-A: Guide

[^0]
[^0]: width=!,height=!,scale=0.8,pages=-,pagecommand=APPENDIX A

