Thesis Title

A Thesis Submitted for the Partial Fulfillment of the Requirements for the degree of Master of Technology

in

Dept. Name (Specialization: Specialization)

by

John / Jane Doe Enrollment no.: 20XXYYYXXX

Under the guidance of

Supervisor Name

DEPARTMENT OF DEPT. NAME INDIAN INSTITUTE OF ENGINEERING SCIENCE AND TECHNOLOGY, SHIBPUR - 711103

Copyright ©IIEST, Shibpur All Rights Reserved

Department of Dept. Name Indian Institute of Engineering Science and Technology, Shibpur, India - 711103

CERTIFICATE

This is to certify that we have examined the thesis entitled "**Thesis Title**", submitted by **John / Jane Doe** (Roll Number: 20XXYYYXXX), a postgraduate student of **Department of Dept. Name** in partial fulfillment for the award of degree of **Masters in Technology** with specialization of **Specialization**. We hereby accord our approval of it as a study carried out and presented in a manner required for its acceptance in partial fulfillment for the post graduate degree for which it has been submitted. The thesis has fulfilled all the requirements as per the regulations of the institute and has reached the standard needed for submission.

Head of Department Prof. Susanta Kumar Parui, Dept. of E.T.C., IIEST, Shibpur.

Supervisor Supervisor Name,

Supervisor Name, Dept. of E.T.C., IIEST, Shibpur.

Examiners:

1.											
2.											
3.											

Place: Shibpur Date:....

Department of Dept. Name Indian Institute of Engineering Science and Technology, Shibpur, India - 711103

CERTIFICATE OF APPROVAL

The forgoing thesis report is hereby approved as a creditable study of "**Thesis Title** "carried out and presented satisfactorily to warrant its acceptance as a pre-requisite for the Degree of Master of Technology of University. It is understood that by this approval the undersigned do not necessarily approve any statement made, opinion expressed and conclusion drawn there in but approve the progress report only for the purpose for which it is submitted.

Examiners:

1.											
2.											
3.											

Place: Shibpur Date:....

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere and deep gratitude to my supervisor, **Supervisor Name**, Faculty, Department of Dept. Name, for his kind and constant support during my post-graduation study. It has been an absolute privilege to work with Supervisor Name for my master thesis dissertation. His valuable advice, critical criticism and active supervision encouraged me to sharpen my research methodology and was instrumental in shaping my professional outlook.

I also want to express my gratitude towards **Prof. Susanta Kumar Parui**, Professor & Head, Dept. of Electronics & Telecommunication Engineering, IIEST, Shibpur for providing such a wonderful environment filled with continuous encouragement and support. I would also like to thank the entire faculty for their constant encouragement and assistance they have provided me. Last, but definitely not the least, a very special note of thanks to my parents, who have helped me during this entire period directly or indirectly.

ABSTRACT

In recent microprocessors or ASIC chips, the operating frequency is set by the target market. This leads to very tight timing and power constraints for the proposed circuit design. The industrial shift for adopting lower technology nodes also presents a new challenging frontier as transistors get less efficient as they undergo scaling. Analog designers are expected to optimize these conventional designs and yet meet the reduced power constraints and performance metrics imposed by various applications.

Keywords: Level shifter, energy efficient design, ultra low voltage, ULPLS, 22 nm technology.

Contents

1	Introduction	1
	1.1 Section 1.1	3
	1.1.1 Sub-Section 1.1.1 \ldots	3
	1.1.2 Sub-Section 1.1.1 \ldots	3
2	Methodology	5
3	Chapter 3	6
4	Chapter 4	7
5	Chapter 5	8
	5.1 Summary	8
	5.2 Future Work	8
	5.2.1 Work Breakdown Structure (WBS)	8
6	Chapter 6	10

List of Figures

1.1	Figure 1.1	2
4.1	My caption.	7

List of Tables

1.1	Table Caption	4
2.1	Fable Caption	5

Chapter 1 Introduction

The environmental impact of global warming has accelerated the interest to adopt non-conventional power generation [1]. There are several promising sustainable energy alternatives, among which the adoption of Thermoelectric (TE) materials to scavenge the by-product heat generation is widely accepted [1]. It is crucial for applications associated with energy harvesting to posses a high figure of merit $ZT (\geq 1)$ [1].

The ZT can be related to other thermoelectric parameters by $\text{ZT} = \left(\frac{\sigma_e \times S_B^2 \times T}{\kappa_{ph} + \kappa_e}\right)$, where σ , S_B , $\kappa_{ph} + \kappa_e$, and T are the electrical conductivity, Seebeck coefficient, total thermal conductivity, and temperature value respectively [1].

Experimental and theoretical identification of two dimensional (2D) [1] or three dimensional (3D) efficient TE materials is laborious and time inefficient [1]. It is also a colossal task to compile databases of thermoelectric parameters for various synthesized TE materials and their variations with doping (n-type or p-type) [1]. Computational methods using density functional theory (DFT) are also time consuming and demand high computational complexity for exploring TE materials [1].

Efficient TE materials require a large ZT which in turn requires to maximize the Seebeck coefficient absolute value, minimize the thermal conductivity and possess a high electrical conductivity. Optimizing these parameters is a complicated task as they are inherently dependent and conflicting in nature [1]. Thus, optimizing ZT requires a thorough understanding of these various transport properties and their interrelated material characteristics.

The Seebeck coefficient depends on this energy-dependent conductivity around a fermi window centered about the fermi energy level, which is given by the Mott expression (Eq. 1.1) [1].

$$S_B = \frac{\pi^2}{3} \left(\frac{K_B^2 \times T}{q}\right) \left[\frac{d[ln(\sigma(E))]}{dE}\right]_{E=E_F} = \left(\frac{8\pi^2 K_B^2 T}{3qh^2}\right) m_d^* \left(\frac{\pi}{3n}\right)^{2/3}$$
(1.1)

where n is the carrier concentration and effective mass m_d^* of the carrier when present in the conduction band or valence band. This effective mass (m_d^*) is obtained from the function of the density of states (DOS) and is thus also known as m_{DOS}^* [1]. The underlying assumption for the final closed form expression is the presence of a parabolic band and an energy-independent scattering approximation [1]. The electrical conductivity (σ_e) can be approximated by the Drude model in terms of its carrier concentration (n) and mobility (μ) as shown in Eqn. 1.3. Thus, the influence of carrier concentration impacts both the parameters contradictorily as shown in Fig. 1.1.

Figure 1.1: Figure 1.1

$$\sigma_e = nq\mu = \frac{nq^2\tau}{m} \tag{1.2}$$

$$\kappa = \kappa_{ph} + \kappa_e = \left(\frac{\pi^2}{3}\right) \left(\frac{nK_B^2 T\tau}{m}\right) + L_n \times \sigma_e T \tag{1.3}$$

$$L_n \approx \left(\frac{\pi^2}{3}\right) \left(\frac{K_B}{q}\right)^2 \tag{1.4}$$

1.1 Section 1.1

1.1.1 Sub-Section 1.1.1

 $\operatorname{content.}$

1.1.2 Sub-Section 1.1.1

content.

	$\mathrm{ZT}(10^{-4})$	XX exp,
'n	$\sigma_e(\times 10^{-3}Scm^{-}1)$	YY exp,
le 1.1: Table Captio	$\kappa(Wm^{-1}k^{-1})$	ZZ exp,
Tabl	Direct / In- direct	Direct
	Bandgap(ev)	YYYXXXX ZZZ exp. YYYexp. XXXexp,
	Space Group	XXXXXX
	Crystal	XXX
	Material	XXX

Caption
Table
1.1:
Ο

Chapter 2 Methodology

Database	Crystal in- formation	Mechanical parameters	Thermodynamic parameters	Electronic parameters
Database 1	Υ	Υ	Υ	Υ
Database 2	Υ	Υ	Υ	Υ
Database 3	Υ	Υ	Υ	Υ
Database 4	Υ	Υ	Υ	Υ
Database 5	Υ	Ν	Y	Υ

Table 2.1: Table Caption

Chapter 3

Chapter 3

- Item1
- Item2
- Item3
- Item4
- Item5
- Item6

Chapter 4 Chapter 4

Chapter 5

Chapter 5

5.1 Summary

- \bullet Item1
- $\bullet~$ Item2
- Item3
- Item4
- $\bullet~{\rm Item5}$
- Item6

5.2 Future Work

5.2.1 Work Breakdown Structure (WBS)

- Item1
- Item2
- Item3

- Item4
- Item5
- Item6

Chapter 6

Chapter 6

References

- Shreeja Das, Santanu Mahapatra, Jehan Taraporewalla and Dipankar Saha, "Machine learning assisted search of thermoelectic materials with enhanced power factor, figure of merit, and air stability," Workshop on Spintronics and Magnetism on 2D Materials, EPFL, (2021).
- [2] Snyder, G., Toberer, E. "Complex thermoelectric materials", *Nature Mater 7*, 105–114 (2008).
- [3] LTspice simuator, Analog devices, available at https://www.analog.com/en/ design-center/design-tools-and-calculators/ltspice-simulator.html
- [4] Wang, A. P. Chandrakasan and S. V. Kosonocky, "Optimal supply and threshold scaling for subthreshold CMOS circuits, "Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002, 2002, pp. 7-11, doi: 10.1109/ISVLSI.2002.1016866.

APPENDIX-A: Guide

What is LATEX?

What is IAIEX? IATEX(usually pronounced "LAY teck," sometimes "LAH teck," and never "LAY teck," is a mathematics typesetting program that is the standard for most professional mathematics writing. It is based on the typesetting program TEX created by Donald Knuth of Stanford University (his first version appeared in 1978). Leslie Lamport was responsible for creating IATEX a more user friendly version of TEX. A team of IATEX programmers created the current version, IATEX 2ε.

Math vs. text vs. functions

In property typeset mathematics variables appear in italics (e.g., $f(x) = x^2 + 2x - 3$). The exception to this rule is predefined functions (e.g., $\sin(x)$). Thus it is important to always treat text, variables, and functions correctly. See the difference between x and x, -1 and -1, and $\sin(x)$ and $\sin(x)$. There are two ways to present a mathematical expression— inline or as an equation.

Inline mathematical expressions

Inline expressions occur in the middle of a sentence. To produce an inline expression, place the math expression between dollar signs (\$). For example, typing $\$0^{c_c} : c_{1} \ge 1$ is the same as $\frac{1}{2} : c_{1} \ge 1$ radians yields 90° is the same as $\frac{\pi}{2}$ radians.

Equations

Equations are mathematical expressions that are given their own line and are centered on the page. These are usually used for important equations that deserve to be showcased on their tor important equations that deserve to be showcased on own line or for large equations that cannot fit inline. To produce an inline expression, place the mathematical expression between the symbols \[and \]. Typing \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}] yields

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{}$ 2a

Displaystyle

Displaystyle To get full-sized inline mathematical expressions use \displaystyle. Use this sparingly. Typing I want this \$\displaystyle \sum_{n=1}^{\\infty} \fract(1\n)\$, not this \$\sum_{n=1}^{\\infty} \fract(1\n)\$. yields

I want this $\sum_{n=1}^{\infty} \frac{1}{n}$, not this $\sum_{n=1}^{\infty} \frac{1}{n}$.

Images

You can put images (pdf, png, jpg, or gif) in your document. They need to be in the same location as your .tex file when you compile the document. Omit [width=.5in] if you want the image to be full-sized.

http://www.inisacci. /beginffigure}[ht] /includegraphics[width=.5in]{imagename.jpg} /captionfThe (optional) caption goes here.} /end{figure}

A quick guide to IATEX

Lists

Text decorations

Your text can be iddies (textit{italics}), boldface (textbf{boldface}), or <u>underlined</u> (umderline{underlined}). Your math can contain boldface, R (umathbf{R}), or blackboard bold, R (umathbf{R}). You may want to used these to express the sets of real numbers (R or R), integers (Z or Z), rational numbers (Q or Q), and natural numbers (N or N). rational numbers (Q or Q), and natural numbers (N or N). To have text appear in a math expression use \text. (0,1]=\{x\in R : x>0 and x \le 1\}. (Without the \text command it treats "and" as three variables: (0,1] = {x \in \mathbb{R} : x > 0 and x \le 1}.)

Spaces and new lines

LATEX ignores extra spaces and new lines. For example, Brigh agnores extra spaces and new nnes. For example, This sentence will look fine after it is compiled. This sentence will look fine after it is compiled. Leave one full empty line between two paragraphs. Place \\ at the end of a line to create a new line (but not create a new paragraph). paragraph). This compiles

like\\ this. This compiles

like

this. Use \noindent to prevent a paragraph from indenting

Comments

Use % to create a comment. Nothing on the line after the % will be typeset. $f(x) = \sin(x)$ whis is the sine function yields $f(x) = \sin(x)$

Delimiters

description parentheses brackets command (x) output (x) [x] {x} [x] curly braces (x)

(1) APJ n Curly braces are non-printing characters that are used to gather text that has more than one character. Observe the differences between the four expressions x⁻², x⁻(2), x⁻2t, x⁻(2t) when typeset: x², x², x²t, x^{2t}.

You can produce ordered as description comman	nd unordered list: d	s. output
\begin	{itemize}	1
\ite	m	
Thin	g 1	 Thing 1
unordered list \ite	m	 Thing 2
Thin	g 2	
i	temize}	
\begin	{enumerate}	
\ite	m	
ordered list Thin	g 1	1. Thing 1
\ite	m	2. Thing 2
Thin	g 2	
Venale	numerate;	
Symbols (in <i>matl</i>	<i>i</i> mode)	
The basics	,	
description	command	output
addition	+	+
subtraction	-	-
multiplication (times)	\pm \times	т У
multiplication (dot)	\cimes	^
division symbol	\dir	
division (elash)	/	i
circle plus	/	/ —
circle times	\otimes	0
equal	=	_
not equal	\ne	
less than	<	<
greater than	>	~
less than or equal to	\le	<
greater than or equal to	\ge	>
approximately equal to	\approx	~
infinity	\infty	∞
dots	1,2,3,\ldots	$1, 2, 3, \ldots$
dots	1+2+3+\cdots	$1 + 2 + 3 + \cdot$
fraction	$frac{a}{b}$	a b
square root	\sqrt{x}	\sqrt{x}
nth root	$\[n]{x}$	$\sqrt[n]{x}$
exponentiation	a^b	a^b
subscript	a_b	a_b
absolute value	x	x
natural log	$\ln(x)$	$\ln(x)$
logarithms	\log_{a}b	$\log_a b$
exponential function	e~x=\exp(x)	$e^x = \exp(x)$
degree	\deg(f)	deg(f)

APPENDIX-A: Guide

Functions description maps to composition piecewise function $_{\circ}^{output}$ commandcommand
\to
\circ
|x|=
\begin{cases}
x & x\ge 0\\
-x & x<0
\end{cases}
</pre> $|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$ outputρ σ \sigma Set theory \gimel Set theory description set brackets element of not an element of subset of not a subset of contains contains union command \{1,2,3\} \in \not\in \subset \subset \subset \supset \cup \cup $_{\{1,2,3\}}^{output}$ € ∉ union intersection $\bigcup_{n=1}^{10} A_n$ big union $\bigcap^{10} A_n$ $\ \ n=1^{10}A_n$ big intersection empty set power set minimum maximum supremum infimum \emptyset
\mathcal{P}
\min
\max
\sup
\inf
\life
\ \mathcal{P} min max sup inf $\lim_{\substack{\lim sup\\ \lim inf}} \overline{A}$ limit superior limit inferior . \limsup \liminf closure \overline{A}

Calculus		
description	command	outpu
derivative	\frac{df}{dx}	$\frac{df}{df}$
derivative	\f'	dx f
partial derivati	ve {\partial f {\partial x}	$\frac{\partial f}{\partial x}$
integral	\int	ſ
double integral	\iint	ſſ
triple integral	\iiint	
limits	\lim_{x\to \infty	$\lim_{\substack{x \to \infty \\ \infty}}$
summation	$\sum_{n=1}^{i=1}$	$ya_n = \sum_{n=1}^{n} a$
product	$prod_{n=1}^{inf}$	ty}a_n $\prod_{n=1}^{n-1} a$
Logic		
description	command	output
not	\sim	~
and	\land	^
or	\lor	V
ifthen	\to	\rightarrow
if and only if	\leftrightarrow	↔
logical equivale	ence \equiv	=
there eviete	loriete	
for all	\forall	Ä
implies	\Rightarrow	⇒
equivalent	\Leftrightarrow	⇔
Linear algeb	ora	
description	command	output
vector	\vec{v}	\vec{v}
vector	\mathbf{v}	V 11.711
norm	\]oft	v
	\begin{array}{ccc}	
	1 & 2 & 3 \\	[1 2 3
matrix	4 & 5 & 6\\	4 5 6
	7 & 8 & 0	7 8 0
	\end{array}	-
	\right]	
	\left	
	1 & 2 & 3 \\	1 2 3
determinant	4 & 5 & 6 \\	4 5 6
	7 & 8 & 0	7 8 0
	\end{array}	
	\right	
determinant	\det(A)	det(A)
trace	\operatorname{tr}(A)	tr(A)
dimension	\dim(V)	$\operatorname{aum}(V)$

3 6 0 2 5 8 $\begin{array}{c}
 1 \\
 4 \\
 7
 \end{array}$

Number theory							
description					outout		
description		comman	ia		output		
does not divide		\not			l v		
div.		\operat	orn	ame{div}	div		
mod		\mod	0111	uno (ur v)	mod		
greatest common di	ivisor	\gcd			ecd		
ceiling		\lceil	x \	rceil	[x]		
floor		\lfloor	x	\rfloor			
Geometry and t	trigon	ometr	y				
description c	omman	d	ou	tput			
angle \	angle .	ABC	ΖA	\hat{ABC}			
degree 9	0^{\ci:	rc}	90%	D			
triangle \	triang	le ABC	$\Delta $	ABC			
segment \	overli	ne{AB}	AF	3			
sine \	sin		\sin				
cosine \	cos		cos	3			
tangent \	tan		tar	1			
cotangent \	cot		cot				
secant	sec		sec				
cosecant	csc		csc	:			
inverse sine	arcsin		arc	sin			
inverse cosine	arccos		arc	cos			
inverse tangent \	arcuan		arc	tan			
Symbols (in t	text 1	mode)					
The followign symbol	ls do n o	ot have t	o be	e surrounde	d by dollar		
signs.							
description	comm	and		output			
dollar sign	\\$			\$			
percent	\%			%			
ampersand	\&			&			
pound	\#			#			
backslash	\text	backslas	sh	1			
left quote marks							
right quote marks	,,						
single left quote	:						
single right quote	V			V more			
nypnen op doch	A-1 dy	15		A-1ay			
em-dash	Yes	15 -or no?		Ves—or n	0?		
Becourses	100	01 110.		100 01 11	0.		
Resources							
Great symbol look-up IAT _E X Mathematical	p site: 1 Symbol	Detexify ls					
The Comprehensive I	tat _E x s	ymbol L	\mathbf{ist}				
The Not So Short Int	troduct	ion to L ^a	Г _Е Х	2ε			
TUG: The T _E X Users Group							
CTAN: The Compreh	hensive	T _E X Arc	hive	e Network			
IATEX for the Mac:	AacTreX						
IATEX for the PC: The	XnicCe	nter and	Mil	KTFX			
LATEX online: WriteL	aTeX.	und					
-							
Dave Richeson, Dicki	inson C	ollege, ht	tp:/	//divisbyzei	o.com/		

width=!,height=!,scale=0.8,pages=-,pagecommand= $\mathbf{APPENDIX}$ - \mathbf{A}