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Abstract

In this thesis, we prove that .... (English abstract)
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Chapter 1

Introduction

1.1 Background

The study of A is motivated by B. It is important to study A.

1.2 Main results

Theorem 1.2.1. In this thesis, we prove that

e™+1=0.

1.3 Structure of the thesis

In Chapter 2, we will make some necessary preparations. The proof of Theo-

rem 1.2.1 will be given in Chapter 3.



Chapter 2

Preliminaries

2.1 Notation

Here is table of basic notations.

X a compact metric space

B Borel o-algebra

T a continuous map from X to X

i | a T-invariant Borel probability measure

Table 2.1: Table of notation

2.2 Definitions

Definition 2.2.1. Let X be a set. A function from X to Y is a mapping f: X —
Y.



2.3 Previous results

We include the following theorem, see e.g. [1].

Theorem 2.3.1. There are infinitely many primes.



Chapter 3

Proof of main theorems

3.1 Lemmas

Lemma 3.1.1. Ifa < b and b < a, then a =b.

3.2 Propositions

Proposition 3.2.1. The relation < is a partial order on R.

Proof. 1t is readily checked that < is a preorder. Then the proof is completed by
Lemma 3.1.1. Il



Chapter 4

Applications

4.1 Examples

Example 4.1.1. Let A C R? be an self-affine set.

Figure 4.1: The Barnsley fern is a self-affine set!.

!This figure is generated using a notebook from zfengg/PlotIFS.jl.
)


https://cuhkfractal.github.io/assets/misc/PlotIFS.jl.html

Appendix A

Index of glossary terms
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