
Exploring Underfull or Overfull boxes and
badness calculations

Overleaf Support Team

May 2020

NOTE: �e calculations in this article will no longer be valid if you change
the document text font.

1 Introduction
�is article explores the meaning of Underfull and Overfull boxes and examines
the calculation of badness using an \hbox with �nite and in�nite glues. We have tried
to provide a range of examples to demonstrate various aspects of TEX engines’ box-
construction behaviour and the “diagnostic messages” issued by TEX engines during
the box-creation process. It is unlikely that we have covered every possible scenario
but hope to have provided su�cient material to “demystify” some aspects of TEX-based
typese�ing. We also hope to be forgiven for using various raw TEX commands within
the examples :-).

2 Background: �tting “stu�” into boxes
Before going on vacation most of us dust-down our suitcases to �ll them with a
collection of materials we need for the trip. Of course, a suitcase is a three-dimensional
(3D) box with a (mostly) �xed width, height and depth. Into that 3D box we might try
to squeeze as much as we need (or think we need…). If we’re lucky, and can travel
light, our “stu�” might not completely �ll the case, so it will have excess space and be
Underfull—or we may try to squeeze too much into it, and fail, because the suitcase
is Overfull.

TEX engines face a not too dissimilar problem when tasked with packaging typeset
material into the boxes it creates—TEX’s boxes are restricted to 2D but with the vertical
dimension subdivided into the box’s depth and height. Deep inside TEX engines the
process of creating boxes is referred to as packaging: in e�ect, it involves taking a list
of typeset items and packing them into a container to provide a “boundary area” which
de�nes how those items will be arranged on the typeset page. �e resultant packaged-
up content container (a box) produces an \hbox or one of the vertical variants: \vbox,
\vtop or \vcenter.

1

3 Introduction to boxes and glue
All TEX engines (PdfTEX, X ETEX, LuaTEX etc.) typeset LATEX documents using Donald
Knuth’s so-called boxes and glue model: your typeset text or mathematics is assembled
into a “box” and a TEX engine uses �exible space called glue to adjust the positioning
of material within the box, helping to achieve a desirable typeset result. For example,
when breaking a paragraph into lines of typeset text a TEX engine uses so-called
interword glue to adjust spacing between individual words to achieve an optimal
linebreak.

�e term “glue” is probably not ideal and it may have been preferable to describe TEX’s
�exible spacing as behaving like a spring—with its ability to stretch or shrink. Usage of
the term glue was adopted early in the history of TEX’s development—people quickly
got accustomed to using “glue” so it soon became too late give it a be�er name, such
as spring.

3.1 A little more about glue
If you are new to LATEX you may not have encountered the lower-level concept of TEX
glue so here an introduction to the key ideas. Because glue is a form of �exible spacing
it is speci�ed using three components: a �xed amount plus an amount it can stretch
and an amount by which it can shrink. Glues can be speci�ed to allow �nite or in�nite
amounts of stretching and/or shrinking.

You can specify glue using commands such as \hskip or \vskip:

• horizontal glue: \hskip <fixed amount> plus <amount to stretch> minus
<amount to shrink>

• vertical glue: \vskip <fixed amount> plus <amount to stretch> minus
<amount to shrink>

where

• plus and minus are keywords that TEX engines understand

• <fixed amount> is referred to as the normal component of the glue

• <amount to stretch> is referred to as the stretch component of the glue

• <amount to shrink> is referred to as the shrink component of the glue.

<fixed amount> is required but <amount to stretch> and <amount to shrink>
are both optional—if either, or both, are missing they are set to a value of 0.

In addition to \hskip and \vskip TEX engines provide other primitive (built-in) glue-
related commands that we won’t address here. �ose commands include:

• horizontal glue: \hfil, \hfill, \hfilneg, \hss

• vertical glue: \vfil, \vfill, \vfilneg, \vss

together with \mskip for inserting glue in math expressions.

2

https://www.overleaf.com/learn/latex/Articles/Boxes_and_Glue:_A_Brief,_but_Visual,_Introduction_Using_LuaTeX

3.2 Finite and in�nite glue units
For glues speci�ed with \hskip and \vskip the normal component of glue (<fixed
amount>) has to be expressed in “real world” units; however, TEX engines allow for
the shrink component (<amount to shrink>) and the stretch component (<amount
to stretch>) to be expressed in two types of unit:

• �nite units: these are “real word” quantities such as points (pt), millimetres (mm),
inches (in) etc.

• in�nite units: these are “TEX world” quantities called fil, fill or even filll

TEX engines use those strange “in�nite units” to create glue components that are
in�nitely stretchable or in�nitely shrinkable.

Each of fil, fill or filll represent “di�erent orders” of in�nite �exibility, with each
one being more �exible than the next:

fil < fill < filll

Glue components expressed in �nite units are said to have glue order 0 but components
expressed in in�nite units have glue order 1, 2 or 3, as shown in the following table:

Units Glue order
pt, mm, in, etc. 0
fil 1
fill 2
filll 3

Pu�ing this all together:

• the normal component of glue (<fixed amount>) is mandatory and has to be
expressed in “real world” units, so it is always glue order 0. Note that the normal
component can have zero width by specifying 0pt, 0mm etc.

• the shrink component (<amount to shrink>) and the stretch component
(<amount to stretch>) of glue are both optional and can be expressed in
�nite units (glue order 0) or in�nite units of fil, fill filll with glue order 1,
2 or 3 respectively

Just to add another term, the value of a glue’s normal component is also called its
natural width which is the amount of space occupied by that glue if no stretching or
shrinking takes place. Interested readers can �nd more information and a detailed
worked example in the Overleaf article How TEX Calculates Glue Se�ings in an \hbox.

3.2.1 Example: glue with �nite components

Glue can be speci�ed to have stretch or shrink components using any combination of
�nite or in�nite units but we’ll start with an example of glue with �nite stretch and
shrink.

3

https://www.overleaf.com/learn/latex/Articles/How_TeX_Calculates_Glue_Settings_in_an_%5Chbox

If we specify a glue example such as \hskip2pt plus 1pt minus 0.5pt this glue is
comprised of the following:

• �e normal component value is 2pt (the normal component is always a �nite
value). �is glue is also said to have a natural width of 2pt.

• �e plus keyword speci�es the amount of stretch. Here, the glue has a �nite
stretch component value of 1pt.

• �e minus keyword speci�es the amount of shrink. Here, the glue has a �nite
shrink component value of 0.5pt.

By specifying this glue we are providing the TEX engine with “�exible space” that is
normally 2pt wide but we recommend, to the TEX engine, this glue can stretch by up to
1pt or shrink by up to 0.5pt. So, ideally, this glue (�exible space) can shrink to become
as small as 2pt − 0.5pt = 1.5pt or stretch up to 2pt + 1pt = 3pt.

If the TEX engine needed to �ll a particular box it could use our glue to create some
space which occupies anything from 1.5pt up to 3pt. If, for whatever reason, the TEX
engine did not need to stretch or shrink this glue it would be used at its natural width
of 2pt—its normal component value.

Caveat: As we’ll see below, TEX engines will over-stretch �nite glue beyond our rec-
ommended value for <amount to stretch> but they will not over-shrink �nite glue
below the amount speci�ed by our <amount to shrink>. TEX engines consider
over-shrinking to be a “very bad thing indeed!”.

3.2.2 Example: glue with in�nite components

We can rewrite our previous example with in�nite glue using \hskip2pt plus 1fil
minus 0.5fil which comprises the following:

• �e normal component value is 2pt (the normal component is always a �nite
value). �is glue is also said to have a natural width of 2pt.

• �e plus keyword speci�es the amount of stretch. Here, it has an in�nite stretch
component value of 1fil.

• �e minus keyword speci�es the amount of shrink. Here, the glue has an in�nite
shrink component value of 0.5pt.

Our glue has “in�nite” stretch and “in�nite” shrink (in units of fil) so it can stretch
or shrink to any desired value.

3.2.3 Mixing �nite and in�nite glue components

You can specify glue which has a mixture of �nite and in�nite components, such as
\hskip2pt plus 1fil minus 0.5pt. For this particular glue we would say it has an
in�nite stretch component (from the plus 1fil) but �nite shrink component (from
the minus 0.5pt). �is glue can stretch out to any desired value but can only shrink
down to a minimum of 1.5pt.

4

3.2.4 Examples of glue errors

If you try to use in�nite glue as the normal component and write something like

\hskip 1fil plus 2pt minus3pt

you’ll receive an error:
! Illegal unit of measure (pt inserted).
<to be read again>

f
l.57 \hskip 1f

il plus 2pt minus3pt
Dimensions can be in units of em, ex, in, pt,
pc, cm, mm, dd, cc, nd, nc, bp, or sp;
but yours is a new one!
I'll assume that you meant to say pt, for printer's points.
...

If you try to omit the normal component completely and write something like

\hskip plus 2pt minus3pt

you’ll see errors such as these:
! Missing number, treated as zero.
<to be read again>

p
l.93 \hskip p

lus 2pt minus3pt
A number should have been here; I inserted `0'.
(If you can't figure out why I needed to see a number,
look up `weird error' in the index to The TeXbook.)

! Illegal unit of measure (pt inserted).
<to be read again>

p
l.93 \hskip pl

us 2pt minus3pt
Dimensions can be in units of em, ex, in, pt,
pc, cm, mm, dd, cc, nd, nc, bp, or sp;
but yours is a new one!
I'll assume that you meant to say pt, for printer's points.
...

4 Back to boxes
We noted that the task of creating boxes is referred to as packaging: ��ing a list of
typeset items into a container which provides a “boundary area” de�ning how those
items will be arranged on the typeset page. A vital part of the packaging process is
to determine how the glues inside that box will behave: will they stretch or shrink?

5

If so, which ones and by how much? �e placement of individual items within the
enclosing box area/dimensions is largely determined by stretching or shrinking of
glues available in that box.

4.1 Packing boxes
Each time a TEX engine is asked to package a list of typeset items into a new box it
starts out by se�ing that box’s badness value to 0—only if it needs to, will TEX later
calculate an actual badness value for that box. �e TEX engine proceeds to examine
all the individual items contained in the list supplied for packaging—those items might
be characters (glyphs), rules, glue, penalties, other boxes and so forth. Based on the
nature of each item, TEX will determine how each of them might a�ect the dimensions
of the box it is constructing. �e goal is to determine the natural size of the box which
is then compared to the user’s desired size so that TEX can work out how to stretch or
shrink the glue.

TEX engines take particular care with any glue values detected in the list to be packaged.
Only the normal component (natural width) of glue directly contributes to the natural
size dimensions of the box; the glue stretch and glue shrink components do not. Of
course, a TEX engine does not completely ignore the stretch and shrink component
values of glues in the list being packaged. �e TEX engine keeps a running total of
how much glue stretch and glue shrink it has seen for each order of glue. Recall that
�nite units of glue have glue order 0 whereas in�nite units of �l, �ll and �lll have glue
order 1, 2 and 3 respectively.

A�er the TEX engine has examined all items in the list to be packaged-up it will have
calculated the natural size of the box. Recall that for glue items their natural size is
their normal component (the <fixed amount>).

TEX next compares the natural size with any desired size set by the user—for example,
you set the desired size to <dimension> when writing \hbox to <dimension>{...}.
Note, if you do not specify a size for a box and write \hbox{...} or \vbox{...} those
boxes will be have the natural size of the components within them and the glues will
not need to shrink or stretch.

Clearly, the user can set a desired size which is the same as, greater than or less than
the box’s natural size. If we denote the box’s natural size by SN and the user’s desired
size by SD then there are three possibilities:

1. SN > SD: the natural size is greater than the desired size, so the box contents
(i.e., the glues) need to shrink.

2. SN < SD: the natural size is less than the desired size, so the box contents (i.e.,
the glues) need to stretch.

3. SN = SD: the natural size is the same as the desired size, so the glues do not need
to shrink or stretch. �ey will use their normal width value (their natural width
arising from the <fixed amount> value).

6

A�er examining SN and SD the TEX engine knows if the glues need to stretch, shrink
or assume their natural width.

We noted that during box construction TEX engines keep a running total of the amount
of stretch and shrink—for each glue order—seen in the list of items being packaged into
a box. To select which glues will provide the necessary stretching or shrinking, a TEX
engine checks the values of total stretch or total shrink for each glue order and picks
the highest order that that has a non-zero value: that is how the glues are selected
for each box—the highest glue order wins the race. For example, if a particular box
needed to stretch its glue and the sum total of all stretch components was as follows:

Units Glue order Total (stretch)
pt, mm,in, etc. 0 50 (pt)
fil 1 5 (fil)
fill 2 0 (fill)
filll 3 1 (filll)

TEX would choose the glue(s) with filll because it is the highest glue order that has
a non-zero total. In this box, only glues with glue order 3 (filll) will be “activated”
to take part in stretching: all glue(s) of a lower glue order will adopt a size determined
by their natural width.

Further details and a fully worked example can be found in the Overleaf article How
TEX Calculates Glue Se�ings in an \hbox

5 Boxes and their glue settings
Once constructed, each box will have a certain width, height and depth. In addition,
just a�er creating a new \hbox, \vbox, \vtop or \vcenter the TEX engine will assign
three glue-related parameter values to that freshly-minted box to record the stretching
or shrinking behaviour of any glue within the list of items “inside” that box. �ose
parameters are used to “set” the glue in that box: making the glues occupy a particular
amount of space by stretching or shrinking to the values necessary to arrange the
items as required. �ose three parameters are called the glue set ratio, glue order and
glue sign.

• glue order : An integer which determines the order of glue to be activated inside
this box—�nite glue (order 0) or one of the in�nite glues �l, �ll or �ll with glue
order 1, 2 or 3 respectively.

• glue sign: An integer (0, 1 or 2) which determines whether glues will neither
shrink or stretch (0), only stretch (1) or only shrink (2)

• glue set ratio: A �oating point number which is a multiplier applied to glue
components and determines by how much each glue will stretch or shrink.

�e glue order and stretching/shrinking of glue is utilized when a box is physically
wri�en out to the typeset page in the PDF �le, enabling the box contents to be arranged
on the output page as required.

7

https://www.overleaf.com/learn/latex/Articles/How_TeX_Calculates_Glue_Settings_in_an_%5Chbox
https://www.overleaf.com/learn/latex/Articles/How_TeX_Calculates_Glue_Settings_in_an_%5Chbox

Trivia: Calculation of glue set ratio is the only place that TEX engines use �oating point
calculations.

5.1 glue order: an important parameter
�e glue order assigned to a box is key to understanding the origin of Underfull and
Overfull box warnings. �e glue order determines which glues in a box are going
to participate in any stretching or shrinking activities. For example, if a particular
box is assigned a glue order of 2 it means that only those glues with stretch or shrink
components in units of fill are to be used—all glues with a lower glue order do not
take part and will occupy an amount of space determined by their natural width: the
value of their normal component. �e glue sign value determines whether those fill
glue components are going to stretch or shrink.

5.2 Glues and quality control: underfull or overfull?
During creation of boxes destined to contain your typeset material, a TEX engine
examines the resulting box’s “quality” by checking how much “certain glues” (see
below) need to stretch or shrink to produce your box. �e result of those checks are
reported to you using Underfull or Overfull box diagnostic messages which tell you
the box’s “badness” value, or an amount by which your content exceeds the given size
(<dimension>) of that box. Note that is only during the initial box-creation process
that TEX engines issues Underfull or Overfull box diagnostic messages.

Recall that within each box only those glues which have a particular order—as identi�ed
by the box’s glue order—will participate in stretching or shrinking to align or arrange
the contents of the box. �e key point to note is that TEXwill only report Underfull
or Overfull boxes if, during the box’s creation, the TEX engine identi�es that glues
of order 0 need to be used for stretching or shrinking–the “certain glues” referred to
above is glues of order 0.

If a box has glue order 1, 2 or 3 it means that glues containing in�nite shrink or
stretch components (in units of fil, fill or filll) are to be used (or “activated”) for
stretching or shrinking. Consequently, TEX will not report Underfull or Overfull
warnings for such boxes because in�nite glues are speci�cally designed to stretch or
shrink to any desired value—TEX will not consider them to be Underfull or Overfull.

You can typeset the badness value for the most recently constructed box by wri-
ting \the\badness immediately a�er that box is created. As soon as another box is
constructed the badness value for the previous box is lost because it is not stored
or “a�ached” to the box which produced it. badness is a transient value calculated
on-the-�y during box construction—but only if TEX needs to do so (i.e., when the glue
order is 0).

“Box-��ing” processes are an intrinsic aspect of all TEX engines—such as during line-
breaking where individual lines of a typeset paragraph are converted to an \hbox of a
�xed width, or the content of each page is ��ed into a \vbox of a �xed height. During
linebreaking or page construction TEX engines will report Underfull or Overfull

8

box diagnostic messages which result from boxes that you have not speci�ed explicitly.
At �rst, it can be confusing to see numerous Underfull or Overfull \hbox warnings
which arise from linebreaking processes and calculations, not from boxes that you
have directly speci�ed in your TEX or LATEX code. Hopefully, this project will help you
to be�er understand TEX engines’ Underfull or Overfull box messages, irrespective
of their source.

5.3 Using an \hbox to explore badness
To obtain the width of a piece of text it is customary to put that text in an \hbox and
measure the width of that \hbox using \the\wd\<boxnumber>. For example, if we do

\setbox100=\hbox{Overleaf}\the\wd100

TEX informs us that the word “Overleaf” has width 34.97989pt (using the current font).
What happens if we tell TEX to �t “Overleaf” into an \hbox that is just a tiny bit wider,
say 0.00989pt, than we actually need to accommodate “Overleaf”. We will ask the TEX
engine to use an \hbox of width 34.98978pt compared to 34.97989pt, which is actual
width of the text. �at’s really not so bad… is it?

If we write

\setbox100=\hbox to 34.98978pt{Overleaf}

we get a badness value of 10000!

What happened? Why did TEX report a badness value of 10000 for such a tiny increment
in the width of the \hbox? �e reason is that our \hbox has absolutely no glue that
TEX can use to absorb even the tiny extra width of 0.00989pt so it assigns a value of
10000 to the badness of \hbox100.

Conversely, if we tell TEX to �t “Overleaf” into an \hbox that is 0.00989pt narrower
than we actually need to accommodate “Overleaf”, i.e.,

\setbox100=\hbox to 34.97pt{Overleaf}

then we obtain a badness value of 1000000—which is signi�cantly higher than badness
of 10000 reported for \hbox 100 when it was 0.00989pt too wide! In essence, TEX
engines deplore the use of boxes for which the content is too large for a given box and
there is insu�cient glue to provide the amount of shrinking required to absorb the
extra space required by your content—hence TEX engines assign the special badness
value of 1000000.

Trivia: Inside the source code of TEX the badness value of 10000 is referred to as
“in�nitely bad” but no name is given to the badness value of 1000000—maybe that
value is so bad that it leaves TEX speechless…

9

5.4 Adding a small but �nite glue
5.4.1 But �rst: \hbadness

TEX engines provide the \hbadness<threshold> command which you can use to set
a minimum <threshold> value for reporting the badness value of \hboxes. Any
\hbox whose badness below (or equal to) the <threshold> (integer) value will not
be reported as Underfull. Here, we’ll assume LATEX’s standard \hbadness value of
1000—which LATEX sets using \hbadness=1000. Note that the “=” sign is optional, you
can also set \hbadness by writing \hbadness1000. �ere is an equivalent se�ing for
\vboxes: \vbadness.

�e current value of \hbadness can be typeset using \the\hbadness: the current
value of \hbadness is 1000.

5.4.2 … back to the glue

We’ll build on our earlier example \hbox which was 0.00989pt wider than we need to
accommodate “Overleaf”. Here, we’ll add some glue to our \hbox which provides the
TEX engine with some “�exible space” it can use to absorb the additional 0.00989pt of
space inside our \hbox.

Assuming LATEX’s standard \hbadness value of 1000, we can add a tiny amount of
�exible, but �nite, \hskip glue to our \hbox—\hskip0pt plus� where we’ll vary �
from 0.01pt down to 0.002pt:

\setbox100=\hbox to 34.98978pt{Overleaf\hskip0pt plus�}

In the following examples we see very di�erent values of badness resulting from the
values of � , even though di�erences in the glue are extremely small:

� = 0.01pt gives badness = 96. �is is < \hbadness (1000) and not reported.

� = 0.007pt gives badness = 281. �is is < \hbadness (1000) and not reported.

� = 0.006pt gives badness = 446. �is is < \hbadness (1000) and not reported.

� = 0.005pt gives badness = 768. �is is < \hbadness (1000) and not reported.

� = 0.004pt gives badness = 1509. �is is > \hbadness (1000) and is reported.

� = 0.003pt gives badness = 3547. �is is > \hbadness (1000) and is reported.

� = 0.0025pt gives badness = 6157. �is is > \hbadness (1000) and is reported.

� = 0.002pt gives badness = 10000. �is is > \hbadness (1000) and is reported.

�e last 4 examples with � = 0.004pt, 0.003pt, 0.0025pt, 0.0020pt all produce Underfull
box warnings with increasingly large badness values—even though the di�erences
in � are minute. Note that between � = 0.003pt and � = 0.002pt the badness rises
rapidly—but that is due to the badness calculation having a “discontinuity” designed
by Knuth: any calculated badness above 213 = 8192 is reported as 10000 which TEX
considers “in�nitely bad”.

10

If we now set \hbadness=1509 (or use \hbadness1509) and repeat one of our exper-
iments with � = 0.004pt our box still has the same badness value but is no longer
reported as Underfull:

� = 0.004pt gives badness = 1509. �is is equal to \hbadness (1509) and not reported.

5.5 In�nitely �exible glue
In the above examples, TEX reported non-zero badness values because we had used
a small, but �nite, glue a�er “Overleaf”. If we repeat these experiments but switch
to using in�nite glue, an Underfull box is not produced and the badness is always
0. If we now add tiny amounts of �exible \hskip glue but this time with in�nite
�exibility—\hskip0pt plus� where we’ll vary � from 0.01fil down to 0.002fil—we
see badness is 0 in every case.

\setbox100=\hbox to 34.98978pt{Overleaf\hskip0pt plus�}

� = 0.01fil gives badness = 0. �is is < \hbadness (1000) and not reported.

� = 0.007fil gives badness = 0. �is is < \hbadness (1000) and not reported.

� = 0.006fil gives badness = 0. �is is < \hbadness (1000) and not reported.

� = 0.005fil gives badness = 0. �is is < \hbadness (1000) and not reported.

� = 0.004fil gives badness = 0. �is is < \hbadness (1000) and not reported.

� = 0.003fil gives badness = 0. �is is < \hbadness (1000) and not reported.

� = 0.0025fil gives badness = 0. �is is < \hbadness (1000) and not reported.

� = 0.002fil gives badness = 0. �is is < \hbadness (1000) and not reported.

�e reason for the di�erent behaviour of glue with �nite stretch (e.g., � = 0.01pt etc.),
compared to glue with in�nite stretch (e.g., � = 0.01fil etc.) is that TEX engines only
calculate badness for boxes which have to stretch or shrink glue with order 0. Here,
the glue in the \hbox has in�nite stretch in units of fil, so it will always have badness
of 0 and is not considered to be Underfull—fil glue is designed to stretch/shrink to
any size.

5.6 Calculating badness
If the amount of available �nite glue is non-zero, TEX calculates badness using an
approximation to the formula

badness = 100 ×
(

amount of space to �ll or absorb
amount of �nite glue available)

3

A TEX engine is satis�ed with an approximate value for badness because it is used as
an heuristic—it isn’t necessary to calculate an exact value, allowing TEX to keep the

11

calculation fast and e�cient. Note that in the source code of the TEX program Knuth
writes

“Any badness of 213 or more is treated as in�nitely bad, and represented
by 10000.”

where 213 = 8192. Knuth also observes that his approximation to computing the value
of the badness function

“… is capable of computing at most 1095 distinct values, but that is plenty.”

Taking one of our examples above, where we had to �ll an additional space of 0.00989pt
but only had 0.004pt of (�nite) glue available, TEX reported a badness value of 1509
but an exact calculation of badness would be

badness = 100 ×
(

0.00989

0.004
)

3

= 1511.502...

but 1509 is close enough for TEX’s purposes.

5.7 Over-stretching but never over-shrinking of �nite glue
Let’s use \hbox to 16pt{a<glue>b} with various values of <glue> between a and b.

Using \setbox101=\hbox{ab}\the\wd101 we can determine that the width of the
text typeset ab (allowing for kerns) is 9.49998pt.

Just out of interest, we can check for kerning by calculating the width of the individual
characters and testing if their combined individual widths has the same value as
the \hbox{ab}—i.e., when they are typeset together. Width of character ‘a’ is given
by \setbox101=\hbox{a}\the\wd101= 4.56999pt, and the width of ‘b’ is given by
\setbox101=\hbox{b}\the\wd101=4.93pt, giving a combined width of 9.49999pt—
which, up to 4th decimal place, is the same as the width when typeset together:
9.49998pt, so we can assume there is no kerning. �e di�erence of 0.0001pt is a
rounding error—it would produce rather invisible kerning!

5.7.1 Over-stretching of �nite glue

\hbox to 16pt{a b} produces a b with badness =3271. But where did the stretchy
glue come from? �e answer is the space character between a and b: TEX converted
that space character to a “glob” of interword glue—the value of which is speci�c to
each font (and font size). Here, TEX had to over-stretch the glue (arising from the space
character) resulting in a badness value of 3271.

\hbox to 16pt{a\hskip 1pt plus 2pt b} uses an explicit \hskip glue with only 2pt
of stretch (via the plus 2pt) and produces a result similar to using a space character:
it results in a b with badness=2073.

We can work out why. �e desired width of our box is 16pt but what is the natural
width of the components? We know that the width of ‘ab’ is 9.49999pt but what about

12

the glue? Recall that the glue’s normal component contributes to the natural width, so
a glue speci�ed using \hskip 1pt plus 2pt will contribute 1pt to the natural width
of the box, giving a total natural width of 9.49999 + 1 = 10.49999pt, meaning that the
glue has to stretch to �ll 16 − 10.49999 = 5.50001pt of space. Our glue has a total 2pt of
�nite stretch but needs to �ll up 5.50001pt of space in this box. Applying our badness
calculation

badness = 100 ×
(

amount of space to �ll or absorb
amount of �nite glue available)

3

we can plug in our values to calculate

badness = 100 ×
(

5.50001

2
)

3

= 2079.698...

but 2073 is close enough for TEX’s purposes.

Because we used small �nite glue values—from the interword space or the 2pt in our
explicit \hskip glue—TEX was forced to signi�cantly over-stretch those �nite glues,
which resulted in the badness values of 3271 and 2073.

If we add more stretch by using \hbox to 16pt{a\hskip 1pt plus 5pt b} the
\hskip glue has 5pt of stretch (via the plus 5pt) and produces the result a b with
badness=132. Again, we can check this by calculating

badness = 100 ×
(

5.50001

5
)

3

= 133.100...

which TEX approximates to a badness value of 132. �e glue has much more stretch
with which to �ll the box, hence the smaller badness value.

5.7.2 No over-shrinking of �nite glue

�e previous example showed that a TEX engine will, if necessary, over-stretch �nite
glues by far more that we specify (recommend). In the above example we speci�ed
\hskip 1pt plus 2pt, allowing 2pt of �nite stretch but the TEX engine ignored
our recommendation because it was forced to stretch it to 5.50001pt to �ll the \hbox.
However, although TEX engines will over-stretch �nite glue, they will not over-shrink
�nite glues.

5.7.3 An example with larger font size

To make this example easier to discuss we’ll use a very large point size of 50pt to
display our text (also in blue):

\setbox100=\hbox{{\color{blue}\fontsize{50}{50}\selectfont ab}}

13

�e width ofab is 47.49997pt.

Next we’ll use \hbox to 40pt{a\hskip 0pt minus 7.49997pt b} which asks the
TEX engine to typeset an \hbox that is exactly 7.49997pt smaller than the width of the
text ‘ab’ (typeset at 50pt).

It producesab with badness=100. We used an explicit \hskip glue with only
7.49997pt of shrink (via the minus 7.49997pt). TEX uses that minus 7.49997pt
to “squeeze” our characters ab into this box—but only just, resulting in a “perfect �t
badness” value of 100. To understand the badness value of 100 we only need to refer
back to the calculation of badness:

badness = 100 ×
(

amount of space to �ll or absorb
amount of �nite glue available)

3

In our box we had 7.49997pt as the amount of �nite glue available and 7.49997pt of
space to �ll (or in our case, absorb), hence:

badness = 100 ×
(

7.49997

7.49997
)

3

= 100 × (1)
3
= 100

What happens if we now reduce the width of the \hbox to, say, 30pt via

\hbox to 30pt{a\hskip 0pt minus 7.49999pt b}

asking TEX to typeset an \hbox that is exactly 17.49997pt smaller than the width of
the text ab in 50pt type. We still use an explicit \hskip glue with only 7.49997pt of
shrink (via the minus 7.49997pt) but this time the requested \hbox is now 17.49997pt
too small: will TEX over-shrink our glue of 7.49997 to absorb the 17.49997pt—squashing
the a and b closer together to absorb the extra 10pt reduction in the size of \hbox we
have requested?

It producesabwith badness=1000000.

TEX honoured our request for a 30pt wide \hbox as you can see because the text of
“with badness …” overlaps the blue text. However, the ab in the 30pt-wide \hbox are
typeset with exactly the same overlap as the 40pt-wide \hbox: the glue between them
was not shrunk by more than the 7.49997pt because TEX simply will not shrink �nite
glue below the minimum size stipulated in its speci�cation. �is is, of course, unlike
the �nite stretch component of glues which TEX will happily over-stretch whenever
necessary. Here, the \hskip 0pt minus 7.49997pt b} will absorb up to 7.49997pt
but no more.

14

We see that TEX has reported Overfull \hbox(10.0pt too wide) detected at
line... as you can also see in Overleaf. It also assigned this box the “special maximum”
badness of 1000000 because there was insu�cient shrinkable glue to absorb the excess
space of 10pt.

If we increase the shrink to 17.49997pt and write

\hbox to 30pt{{\color{blue}\fontsize{50}{50}\selectfont
a\hskip 0pt minus 17.49997pt b}}

we duly getabwith badness=100. A 30pt \hbox with characters ‘ab’ overlapping.

So, TEX will happily overlap the characters ab but only if there is su�cient glue shrink
to absorb the excess space occupied by the text ab—here, accommodating a 30pt box
size request by shrinking the space between a and b by 17.49997pt.

5.7.4 Trying a tiny bit of in�nite shrink

We’ll try reducing the \hbox right down to 20pt wide by using a tiny amount of
in�nitely shrinkable glue (0.001fil) to see what happens.

\hbox to 20pt{{\color{blue}\fontsize{50}{50}\selectfont
a\hskip 0pt minus 0.001fil b}}

we duly getabwith badness=0.

It has badness=0 and is no longer reported as being overfull. �e di�erence in behaviour
arises because we used in�nitely shrinkable glue (0.001fil).

We can go even further and create a zero width \hbox:

\hbox to 0pt{{\color{blue}\fontsize{50}{50}\selectfont
a\hskip 0pt minus 0.001fil b}}

we duly getab with badness=0.

�e 0.001fil glue has shrunk to absorb the entire width of the box, a total of
47.49997pt. In e�ect, it typesets the ‘a’ then “backspaces” by 47.49997pt and type-
sets the ‘b’.

We’ll fake this (using red text) with a \kern-47.49997pt:

\hbox{{\color{red}\fontsize{50}{50}\selectfont
a\kern-47.49997pt b}}

15

Resultab typeset with \kern-47.49997pt.

Resultab typeset with 0.001fil glue shrink.

To see exactly what is going on, let’s look at the placement of text.

Width of large reda is 22.84998pt

Width of large redb is 24.65pt

When TEX typesetsab it �rst moves forward bya (+22.84998pt) then moves back

by −47.49997pt (via \kern-47.49997pt or 0,001fil) then typesetsb moving
forward again by (+24.65pt), giving a total movement of 0pt (within TEX’s rounding
errors!).

5.8 Understanding \hfuzz

Here, we’ll take a look at the primitive (built-in) TEX command \hfuzz which can be
used to in�uence TEX’s decision as to whether it considers a box to be Overfull and
reported as such.

Let’s go back to our �rst example, \setbox100=\hbox{Overleaf}\the\wd100 where
TEX informs us that (using the current font) the word “Overleaf” has width 34.97989pt.

Pu�ing “Overleaf” into an \hbox that is exactly 34pt:

\setbox100=\hbox to 34pt{Overleaf}

we get a corresponding badness value of 1000000 and a message Overfull \hbox
(0.97989pt too wide) detected at line..., which is not surprising.

If we now set \hfuzz=0.97989pt and repeat the experiment \setbox100=\hbox to
34pt{Overleaf} we still get an \hbox with badness of 1000000 but \hbox 100 is no
longer reported as Overfull .

In the next section we’ll take a closer look at \hfuzz.

16

5.8.1 Adding shrink glue: e�ect on Overfull warning and \hfuzz

When TEX reports an Overfull \hbox or \vbox the amount (in points, pt) by which
the \hbox is too wide or the \vbox is too high is calculated using di�erence between
the excess width and the total amount of zero order shrink glue in the box. We’ll work
through some examples to explain this in more detail.

If we write \hbox to 20pt{\kern25pt}\the\badness to create an empty box we
see space and badness of 1000000. �e \hbox is set to 20pt but the \kern of 25pt
is 5pt wider than the \hbox and there is no shrinkable glue available to absorb the
5pt. As a result, TEX sets the “special badness” value of 1000000 and reports Overfull
\hbox(5pt too wide) detected at line....

If we now add some �exible glue by writing

\hbox to 20pt{\kern25pt\hskip0pt minus1pt}

we see some empty space: and the same “special badness” of 1000000—also due
to insu�cient shrinkable glue being available. However, TEX now reports Overfull
\hbox(4pt too wide) detected at line.... �e box is no longer 5pt too wide but
4pt because TEX has accounted for the 1pt of �exible glue in its report of an Overfull
\hbox.

Going further, if we now add more �exible glue by writing

\hbox to 20pt{\kern25pt\hskip0pt minus1pt\hskip0pt minus2.5pt}

there is a total �exible glue of 1pt+2.5pt = 3.5pt. Now, the box is only 5pt−3.5pt = 1.5pt
too wide, as you will also see reported by Overleaf.

�is example demonstrates that the amount by which a box is reported as Overfull
takes into account the total �nite shrink glue available in the box—i.e., it is not just the
excess width of the non-glue content. In our example, the \kern25pt exceeded the
desired width of 20pt by 5pt. �e total �exible shrink is now capable of absorbing 3.5pt
but that still leaves 1.5pt that cannot be absorbed by shrinking the glue—1.5pt is the
amount by which the \hbox is reported as Overfull. Recall that TEX engines will not
shrink �nite glue below the minimum size speci�ed by its shrink component value.

If we want to stop TEX reporting this Overfull \hbox we need to set \hfuzz=1.5pt,
a�er which TEX will no longer report this space created via an empty \hbox as
being Overfull. \vfuzz is the equivalent command for \vboxes.

17

	Introduction
	Background: fitting ``stuff'' into boxes
	Introduction to boxes and glue
	A little more about glue
	Finite and infinite glue units
	Example: glue with finite components
	Example: glue with infinite components
	Mixing finite and infinite glue components
	Examples of glue errors

	Back to boxes
	Packing boxes

	Boxes and their glue settings
	glue order: an important parameter
	Glues and quality control: underfull or overfull?
	Using an hbox to explore badness
	Adding a small but finite glue
	But first: hbadness
	... back to the glue

	Infinitely flexible glue
	Calculating badness
	Over-stretching but never over-shrinking of finite glue
	Over-stretching of finite glue
	No over-shrinking of finite glue
	An example with larger font size
	Trying a tiny bit of infinite shrink

	Understanding hfuzz
	Adding shrink glue: effect on Overfull warning and hfuzz

