
1

Virtual Machine Introspection with Xen on ARM
Tamas K Lengyel

Technische Universität München
tklengyel@sec.in.tum.de

Abstract—In the recent years, virtual machine introspection
(VMI) has become a valuable technique for developing security
applications for virtualized environments. With the increasing
popularity of the ARM architecture, and the recent addition of
hardware virtualization extensions, there is a growing need for
porting existing VMI tools. Porting these applications requires
proper hypervisor support, which we have been implementing
for the upcoming release of the Xen hypervisor.

I. VMI
Virtual Machine Introspection (VMI) has been proven in the

x86 world to be a viable method to create out-of-band security
software. VMI relies on reconstructing high-level state infor-
mation from low-level data. This data is provided by inspecting
the virtual hardware components of virtual machines, such as
the memory and the vCPU registers; commonly referred to
as bridging the semantic gap. On the lowest level, effective
VMI requires the out-of-band software to interpret the memory
layout of the guest OS by understanding its paging system.
Once the OS paging is interpreted, VMI can take advantage
of more OS specific information to reconstruct the state of the
guest.

The LibVMI [1] library was designed specifically for this
purpose, supporting both Xen and KVM. Incidentally, both
Xen and KVM are now available for the ARM architecture.
Thus, in order to support reconstructing OS internals of ARM
guests, LibVMI had been extended to support the ARM paging
system.

II. MEMORY EVENTS WITH XEN ON ARM
While passive observation of the target VM’s memory is

sometimes sufficient for some security applications (such as
IDS systems); it is interposition that more advanced protection
mechanisms rely on. For effective interposition, the security
system needs to configure the hardware in order to transfer
control to the security system at certain events which have
been deemed critical.

As Xen is a bare-metal hypervisor, the security system most
likely runs in a privileged domain, but outside the hypervisor.
Thus, the hypervisor needs to be extended to support the
following features:

1) Setting and removing traps.
2) Customized trap handlers that understand native and

artificial traps.
3) Event delivery / event notification system.
While Xen does provide such features for fully virtualized

x86 machines (HVM), the system had to be extended to
support the ARM architecture as well.

On x86, one possible method to monitor the execution
of virtual machines is via memory events. That is, trap-
ping the accesses made by the virtual machine during mem-
ory read/write/instruction-fetch operations. This is achieved
through the two-stage paging mechanism: either with the
shadow page-tables [2] or via hardware assisted nested pages
(like Intel’s EPT) [3]. By marking the page table entries in the
second set of tables as non-readable/writable/executable, page
table violations trap into the hypervisor.

With ARM’s virtualization extensions, Xen runs natively
on the hardware assisted nested pages. However, as compared
to Intel’s EPT, the page table entries contain fewer software
programmable bits. This limitations is critical in our context,
as on x86, the custom page permissions are saved directly into
the page table entries. This approach enables the customized
trap handler to easily determine whether a trap was triggered
natively or by the customized permissions set by a listener
application. As ARM lacks enough bits in the page table
entries to store this informatiom, a separate permission-store
had to be implemented, which saves the permissions.

The patches for Xen on ARM adding this new feature are
being finalized and are expected to be available within Xen
4.6.

III. FUTURE WORK

Memory events are only a subset of monitoring techniques
available on modern hardwares, and the ARM platform has not
been sufficiently explored yet to identify all possibilities. While
prior art such as SPROBES [4] identified the Secure Monitor
Call (SMC) instruction as one possible trapping mechanism,
its utility is limited to trapping code-execution in supervisor
mode (that is, the execution of the guest kernel).

ACKNOWLEDGMENTS

This work is supported by the Bavarian State Ministry
of Education, Science and the Arts as part of the FORSEC
research association.

REFERENCES

[1] LibVMI, https://code.google.com/p/vmitools, November 4 2013.
[2] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis

via hardware virtualization extensions,” in Proceedings of the 15th ACM
conference on Computer and communications security. ACM, 2008.

[3] C. Willems, R. Hund, and T. Holz, “Cxpinspector: Hypervisor-based,
hardware-assisted system monitoring,” Ruhr-Universitat Bochum, Tech.
Rep., 2013.

[4] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing kernel code
integrity on the trustzone architecture,” 2014.


