The Schroeder-Bernstein Theorem

Let S and T be two sets such that $f: \mathrm{S} \rightarrow \mathrm{T}$ and $g: \mathrm{T} \rightarrow \mathrm{S}$ where f and g are both injective functions. Prove that there exists a bijective function $h: \mathrm{S} \rightarrow \mathrm{T}$.

Proof. This theorem is very intuitive for the finite dimensional case. Pick any natural number n . Let n represent the cardinality (number of elements) of the set S . For an injection f to exist, the cardinality of set T must be \geqslant the cardinality of set S . But for an injection g to exist, the cardinality of set S must be \geqslant the cardinality of set T. Thus, $\boldsymbol{\operatorname { c a r d }}(S)=\boldsymbol{\operatorname { c a r d }}(T)$ and there exists a bijective function h from S to T .

For the infinite dimensional case, consider the following problem: what if $\exists x_{0}$ s.t $x_{0} \in S$ but $x_{0} \notin g(T)$? The definition of f guarantees that $f\left(x_{0}\right) \in T$. Hence, $g\left(f\left(x_{0}\right)\right) \in S$. Now, if $f\left(g\left(f\left(x_{0}\right)\right)\right)=f\left(x_{0}\right)$ then $f(a)=f(b)$ for some $a \neq b$; thus, there is a contradiction because we know that f is injective. Conversely, what happens in case $f\left(g\left(f\left(x_{0}\right)\right)\right) \neq f\left(x_{0}\right)$? We end up with a cycle of consecutive images of f and g. Somehow, we must show that even that cycle causes a contradiction that prevents the existence of a bijective function h ! We must formalize our intuition now.

Let $X_{0}=S \backslash g(T)$. Let the cycle of X_{n} be defined recursively by $X_{n}=g\left(f\left(X_{n-1}\right)\right)$. Finally, let $X=\cup_{n \in N} X_{n}$ where $X \supset X_{0}=S \backslash g(T)$. Define $h: \mathrm{S} \rightarrow \mathrm{T}$ by the following construction:

$$
h(x)= \begin{cases}f(x), & \text { if } x \in X \\ g^{-1}(x), & \text { if } x \notin X\end{cases}
$$

We claim that h is bijective.
\mathbf{h} is injective: Let $x, x_{0} \in S$ with $h(x)=h\left(x_{0}\right)$. If $x, x_{0} \in X$ then $f(x)=h(x)=$ $h\left(x_{0}\right)=f\left(x_{0}\right)$ and we're done because f is injective. If both $x, x_{0} \notin X$, then $x=g(h(x))=$ $g\left(h\left(x_{0}\right)\right)=x_{0}$. However, when $x \in X$ and $x_{0} \notin X$, we must approach this differently. We know that $h(x)=f(x)$. This means that $g^{-1}\left(x_{0}\right)=h\left(x_{0}\right)=h(x)=f(x)$ and composing with g means $g(f(x))=x_{0}$. However, $g(f(x))$ must be in X, but x_{0} was defined not to be in X - leading to a contradiction.
\mathbf{h} is surjective: Let $y \in T$. We want to show that there exists an x such that $h(x)=y$. Let $x^{\prime}=g(y)$. If $x^{\prime} \notin X$, we have that $h\left(x^{\prime}\right)=g^{-1}\left(x^{\prime}\right)=y$. Let $x=x^{\prime}$ and we are done. However, if $x^{\prime} \in \mathrm{X}$, then $x^{\prime} \in X_{n}$ for some n . $n \neq 0$ because x^{\prime} is the image of some y under g. Let $x \in X_{n-1}$, be such that $x^{\prime}=g(f(x))$. Then, we know that $g(f(x))=x^{\prime}=g(y)$. Hence, $f(x)=y$ which is exactly what we wanted because in this sub case $f(x)=h(x)$.

Phew! We first constructed h , a function from S to T , and now proved that it is bijective.

