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Let one consider the product integral
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To clarify that the integral extends over to the -1, brackets can be put around
the integrand,
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To solve this integral, one may consider the Riemann sum formulated as
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It can be thus stated that
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and that
lim dx =0
n— o0
Henceforth it can be said that
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Returning to the original integral. the integrand can be multiplied by % such

that the integral is shown by
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To further simplify the problem, the following function can be taken into
account,
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with a being some arbitrary term. To differentiate this function, the natural
logarithm of both sides can be taken such that
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Using the property of the natural log function
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the function Iny = In (a®) can be expressed as
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By differentiating both sides one gets

d d
— (Iny) = e (zlna)

dx
1 @ =Ina
y dz
Multiple both sides by v,
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Derivatives are also defined by the difference quotient represented as
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Applying this to f(z) = a®, one gets
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a” can be then factored and pulled out of the limit,
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As stated before, lim,, . Az = dz, and thus
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Since it has been proved that
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one can set the two derivatives equal, such that
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Divide both sides by a®,
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If a is substituted with x, one is left with
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This is the integrand from the product integral [ o dr. By plugging this
into the integral, it can be stated that
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All that is left now is integration by parts. The following substitutions can be
set,

and thus

u=Inx
dv=1dz

The derivative of the natural logarithm of z is %, and the integral of 1dx is =z,
so therefore
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This can be substituted for integration by parts, and the integral can now be

represented as
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The integral of 1dx is once again =z,
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Therefore, it has been proved that
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