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1 Introduction

The multivariate normal distribution is undoubtedly one of the most well-known and useful
distribution in statistics, playing a predominant role in many areas of application such as
representing a natural extension of the univariate normal distribution and provides a suit-
able model for many real-life problems concerning vector-valued data. Also, for the bivariate
normal distribution, positive and negative dependence properties of the components of the
random vector are completely determined by the sign and size of the correlation coefficient
(Tong, 1990). In Statistics, many problems concerning data analysis as well as inference
and interpretation, give more reliable results if samples are collected randomly. The tests
and methods used for this analysis are usually more powerful if the sample follows a normal
distribution.
In this report, univariate and multivariate random samples were taken from different distri-
butions. The univariate random samples were generated from a standard normal distribution
and Cauchy distribution. The multivariate random sample was generated from the bivari-
ate normal distribution. Also two other techniques to assess multivariate normality were
discussed.

2 Methods

2.1 Data

In this study, four different random samples each of size 250, from the standard normal
(N(0,1) and Cauchy (location=0, scale=1) distributions were generated. A bivariate normal
random sample of size 250 with mean µ and variance covariance matrix

∑
was also generated,

and normality was assessed by the quantile-quantile (QQ) plot and the Shapiro Wilk test.
Where

µ =

(
0.0
2.0

)
and

∑
=

(
1.0 0.95
0.95 1.0

)
.

2.2 Assessing Normality

These samples were generated for the specified distribution and summary statistics were then
done to get the descriptive measures. Normality was assessed using histograms, skewness,
kurtosis, quantile-quantile plots. Scatter plot and gamma plots were used to graphically
assess bivariate normality. Furthermore the Shapiro Wilk’s test was used to test the normality
assumption.
The software used was R 3.1.1

3 Results and Discussion

3.1 Sampling from the Normal distribution

From the summary statistics shown in table 1 below, the means of the generated random
samples are slightly different. The sample means ranges from -0.075 to 0.008 and from the
shapiro-wilk’s test, the different samples generated with a normal distribution presented a
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p-value > 0.05 confirming that univariate normality holds for each of the four samples.

Table 1: Summary statistics for samples from normal distribution with normality test

Measures Sample1 Sample2 Sample3 Sample4

mean -0.004 0.008 -0.075 -0.034
median -0.043 0.019 -0.026 -0.083

min -3.233 -3.396 -2.864 -2.906
max 3.043 3.195 2.356 2.706

Shapiro-Wilk(Value) 0.991 0.997 0.996 0.994
Shapiro-Wilk(p-Value) 0.138 0.924 0.698 0.383

From figure 1, the QQ plots suggest normality since there is little deviation from the QQ
line and the box plots in figure 2 show possible outliers in some samples though the samples
seem to be symmetrical with respect to the histogram in figure 3.
The skewness of the four samples was found to be 0.147, -0.047, -0.149, -0.031 for sample 1 to
sample4 respectively. The skewness value of sample 1 indicated that the distribution of the
data was slightly skewed to the right and those of sample 2 to 4 indicated that the distribution
of the data is slightly skewed to the left because of the negative value and because the value
is close to zero.Normally, skewness values below -1 and above +1 are clear indications for
skewed distributions.
The kurtosis values of samples 1,2 and 4 were > 3 indicating leptoykurtic distribution,
shaper peaks than a normal distribution, The kurtosis value for sample 3 was < 3 indicating
platykurtic distribution, flatter than a normal distribution with a wider peak. The probability
for extreme values is less than for a normal distribution, and the values are wider spread
around the mean.

Figure 1: QQ-plots of 4 samples Figure 2: Box plots of 4 samples

Figure 3: Histograms of 4 samples
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3.2 Sampling from the Cauchy distribution

The random samples generated from Cauchy distribution did not present a normal distri-
bution as verified by the Shapiro-Wilk’s test for normality (p < 0.05). We also saw a great
difference in the means of the samples which may indicate they maybe properply some out-
lying observations. This is shown in table 2 below

Table 2: Summary statistics for samples from cauchy distribution with normality test

Measures Sample1 Sample2 Sample3 Sample4

mean 1.224 -1.198 0.727 -0.838
median 0.036 -0.071 -0.078 -0.043

min -159.354 -177.670 -36.594 -54.485
max 701.718 26.270 152.439 19.833

Shapiro-Wilk(Value) 0.172 0.254 0.306 0.533
Shapiro-Wilk(p-Value) 2.2e-16 2.2e-16 2.2e-16 2.2e-16

As shown graphically in figure 4 below, no insight of symmetric and bell-shaped imparted and
shows heavy tails from the Cauchy distribution and the random samples generated deviate
from a straight line, which is an indication of non-normality.

Figure 4: QQ-plots of 4 samples from Cauchy distribution

3.3 Bivariate Random Sample

A random sample of size 250 bivariate normal with means µ and variance covariance matrix∑
was generated and the histograms for both variables in the univariate context showing

each distribution to be symmetry with histogram for variable 2 been bimodal. The QQ plots
for both variables also suggested normality since only very few points seems to deviate from
the line as seen in figure 5 and 6 below. Shapiro-Wilk’s test shows the variables are univari-
ately normal and this was strongly corroborated by the Shapiro-Wilk’s test for multivariate
normality (p-value = 0.6667) as shown in table 3 below.
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Figure 5: Histogram for bivariate samples Figure 6: QQ-plots for bivariate samples

Table 3: Shapiro Wilk’s test for normality

Random Variable W P-value

Variable1 0.997 0.938
Variable2 0.996 0.774

Jointly multivariate normality 0.995 0.667

To assess bivariate normality, a scatter plot of both variables done as well as a gamma plot
which was done by plotting the squared mahalanobis distance against chi-square quantiles.
The scatter plot of both variables in figure 7 shows an ellipsoidal plot though there seems to
be possible outliers but we could not base a conclusion on the contours. Instead, we com-
pared the mahalanobis square distance with the chi-square distribution and the multivariates
gamma plot in figure 8 shows very few points deviating from the straight line of the gamma
plot which may indicate a bivariate normality.

Figure 7: Scatter bivaraite normality Figure 8: Multivariate gamma plot
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3.4 Other Multivariate Normality techniques

Generally in literature, there are many tests to assess multivariate normality (Mecklin and
Mundfrom, 2003) but Henze-Zirkler (1990) and Royston (1982) tests are among the best and
most popular methods used by many Researchers.

Henze and Zirkler (1990) introduce a multivariate version of the univariate. This test is
based on a functional distance that measures the distance between two distribution func-
tions. If the data is multivariate normal, the test statistic HZ is approximately lognormally
distributed. It proceeds to calculate the mean, variance and smoothness parameter. Then,
mean and variance are lognormalized and the p-value is estimated. Usually, this test has
some desirable strong points such as consistency against each fixed nonnormal alternative
distribution, asymptotic power against contiguous alternatives of order n−1/2, feasibility for
any dimension and any sample size and affine invariance. As a weakness the Henze-Zirkler
test statistic, like other test statictics does not help in indicating the reason for the rejection
of normality, a test rejection should be complemented with graphical procedures such as a
chi-square plot and multivariate descriptive statistics such as Mardia’s skewness and kurtosis
to arrive at the right conclusion.

The Shapiro-Wilk test (Shapiro and Wilk, 1965), is generally considered to be an excellent
test of univariate normality. It is only natural to extend it to the multivariate case, as done
by Royston (1982). Royston’s (1983) marginal method first tests each of the variates for
univariate normality with a Shapiro-Wilk statistic, then combines all the dependent tests
into one omnibus test statistic for multivariate normality. Royston transforms the Shapiro-
Wilk statistics into an approximate Chi-squared random variable, with degrees of freedom
estimated by taking into account possible correlation structures between the original test
statistics. As a strong point, simulation results have shown that Royston’s test has very
good Type I error control and power against many different alternative distributions. Further,
Royston’s test involves a rather ingenious correction for the correlation between the variables
in the sample. As weakness, Royston’s test has been found to behave well when the sample
size is small and the variates are relatively uncorrelated (Mecklin and Mundfrom, 2005).

4 Conclusion

From combining graphical methods and test statistics helped us improved our judgment on
the normality of the data. The test of normality for the generated standard normal samples
indicated that the samples are normally distributed after been tested univariately. And
from the random Cauchy samples, all the samples did not fulfilled the Shapiro-Wilk’s test
implying these samples were from a non normal population or the cauchy distribution is far
from normality due to high skewness as compared to normal.
In the bivariate case, both the marginal and joint multivariate Shapiro-Wilk’s test suggested
normality and this was also confirmed by the multivariate gamma plot.
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APPENDIX

##### Question1(normal)######

set.seed(1234)

dataframe=replicate(4,rnorm(250,0,1))

dataframe1=dataframe

colnames(dataframe1)=c("X1","X2","X3","X4")

str(dataframe1)

summary(dataframe1)

dataframe1

######checking normality

#qq-plot for normal distribution

library(MASS)

par(mfrow=c(1,4))

for(i in 1:4){

dataframe1[,i]

qqnorm(dataframe1[,i],xlab = "Quantiles", ylab = paste("Sample Quantiles",i))

qqline(dataframe1[,i])

}

###Histograms

par(mfrow=c(1,4))

for(i in 1:4){

hist(dataframe1[,i],prob=TRUE,col="cyan",main=paste("histogram of sample",i))

lines(density(dataframe1[,i]),lwd=3,col="red")

}

####Box plots

par(mfrow=c(1,4))

for(i in 1:4){

boxplot(dataframe1[,i],main=paste("boxplot sample",i))

}

#Checking both the univariate and the multivariate normality from the four

standard normal samples using Shapiro test.

library(mvnormtest)

for(i in 1:4){

print(shapiro.test(dataframe1[1:250,i]))

}

mshapiro.test(t(dataframe1[1:250,1:4]))

#####skewness and kurtosis

library(moments)

print(skewness(dataframe1[1:250,1:4]))

print(kurtosis(dataframe1[1:250,1:4]))
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########Q2: CAUCHY VARIATES ########################################

set.seed(1234)

Cauchy=data.frame(replicate(4, rcauchy(250, scale=1, location=0)))

Cauchy

summary(Cauchy)

######checking normality

#qq-plot for normal distribution

library(MASS)

par(mfrow=c(1,4))

for(i in 1:4){

dataframe1[,i]

qqnorm(Cauchy[,i],xlab = "Quantiles", ylab = paste("Sample Quantiles",i))

qqline(Cauchy[,i])

}

###Shapiro test###

for(i in 1:4){

print(shapiro.test(Cauchy[1:250,i]))

}

mshapiro.test(t(Cauchy[1:250,1:4]))

#####Q3: Bivariate random sample#####

##To check normality the "mvnormtest" package should be installed then we can use it

for checking normality##

library(mvnormtest)

library(MASS)

set.seed(5238)

mu<- matrix(c(0,2), nrow =2, ncol = 1, byrow = TRUE, dimnames = list(c("mu1", "mu2"),

c("means")))

sigma<- matrix(c(1.0,0.95,0.95,1.0), nrow = 2, ncol = 2,byrow = FALSE,

dimnames = NULL)

bivariate<-mvrnorm(n =250, mu, sigma, tol = 1e-1, empirical = FALSE)

bivariate<-as.matrix(data.frame(bivariate))

summary(bivariate[,1])

summary(bivariate[,2])

###qqplot

par(mfrow=c(1,2))

qqnorm(bivariate[,1],main="Q-Q plot for var1")

qqline(bivariate[,1])

qqnorm(bivariate[,2],main="Q-Q plot for var2")

qqline(bivariate[,2])

9



###Histograms

par(mfrow=c(1,2))

for(i in 1:2){

hist(bivariate[,i],prob=TRUE,col="cyan",main=paste("histogram of var",i))

lines(density(bivariate[,i]),lwd=3,col="red")

}

#checking normality for each variates univariately and multivariately

for(i in 1:2){

print(shapiro.test(bivariate[,i]))

}

mshapiro.test (t(bivariate[1:250,1:2]))

###Scatter plot###

plot(bivariate[,1],bivariate[,2],main="Scatterplot for bivariate normality")

#creating gamma plot

require(graphics)

covariance <-cov(bivariate,method = c("pearson"))

d2 <- mahalanobis(bivariate, colMeans(bivariate), covariance, inverted=TRUE)

qqplot(qchisq(ppoints(250),df=2),d2, main="Gamma Plot for bivariate normality",

ylab="Mahalanobis D2")

abline(a=-0.9,b=2.2, col=’red’)

10


