
Lambert W ’s Taylor Series
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The Lambert W function is defined as the inverse of xex. That is:

y = W (x) ⇐⇒ x = yey

It turns out that this has a nice Taylor series:

W (x) =

∞∑
k=1

(−k)k−1

k!
xk

We will derive this, and we’ll take a slightly unusual path to get there.

Taylor’s theorem is:

f(x) =
∞∑
k=0

f (k)(a)
(x− a)k

k!

I could use this theorem directly on W (x), but that involves differentiating W (x) a
bunch of times and seeing if I can find a pattern. That’s really messy. I’ll use a more
interesting approach.

In fact, I’ll only need to use this theorem on polynomials. This avoids issues of conver-
gence; for polynomials, the Taylor series is really a finite sum, because if k is large enough,
then f (k) = 0. (Also, Taylor’s theorem is much easier to prove for polynomials than for
general functions.)

Let’s make a useful change of notation. Instead of writing f ′ for the derivative of f ,
let’s write Df . (Here, D is an operator – it turns a function into a function.) Additionally,
xk

k!
is such an important polynomial that I’ll give it a special name: dk(x) :=

xk

k!
. Note

that:

• Ddk = dk−1

• dk(0) = 0 (when k 6= 0)

• d0 = 1
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dk is called the basic sequence of D.
Our revised Taylor series looks like:

f(x) =

∞∑
k=0

(Dkf)(a) dk(x− a)

We can add together operators. For example, D + D2 is the operator such that (D +
D2)f = f ′+ f ′′. I is the identity operator, i.e., that If = f for every function f . We have
D0 = I.

In addition, we can do weird things such as find eD – since ex =
∑∞

k=0
xk

k! , we can define

eD to mean
∑∞

k=0
Dk

k! .
Define the operator E as follows: (Ef)(x) = f(x+1). That is, E shifts f over one. More

generally, (Eaf)(x) = f(x + a). A nice fact is that DE = ED (that is, they commute).
We will now prove that E = eD.

Start with the Taylor series, and substitute x 7→ x + 1 and a 7→ x:

f(x + 1) =
∞∑
k=0

(Dkf)(x) dk(x + 1− x)

f(x + 1) =
∞∑
k=0

(Dkf)(x) dk(1)

(Ef)(x) =

∞∑
k=0

(Dkf)(x)

k!

E =

∞∑
k=0

Dk

k!

E = eD

Define the Abel operator A := DE. That is, (Af)(x) = f ′(x + 1). By the above
theorem, A = DeD. We have A written in terms of D. Can we express D in terms of A?
That is, can we find the coefficients ck of the series:

D =

∞∑
k=0

ckA
k

And this is where this ties into the Lambert W function. Since W (x) is the inverse of
xex, and A = DeD, we have D = W (A). That means the same coefficients ck will be the
coefficients of the series for W (x).
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This is a variant of Taylor’s theorem, and is equally true:

f(x) =

∞∑
k=0

(Akf)(a) ak(x− a)

where ak is the basic sequence for A – that is, Aak = ak−1, ak(0) = 0 when k 6= 0, and
a0 = 1. We will figure out what the ak are later. Basically, this is the Taylor sequence
with all of the Ds replaced by As. Again, f only needs to be a polynomial. (The proof of
this is similar to how you’d prove Taylor’s theorem for polynomials.)

Differentiating:

(Df)(x) =

∞∑
k=0

(Akf)(a) a′k(x− a)

Set a = x:

(Df)(x) =

∞∑
k=0

(Akf)(x) a′k(0)

(Df)(x) =

∞∑
k=0

a′k(0) (Akf)(x)

D =

∞∑
k=0

a′k(0)Ak

This means that the coefficients of the Lambert W function are precisely a′k(0), where
ak is the basic sequence of A !

So, what are the ak? Let’s list the first few and see if we find a pattern. Remember
that A = DE. Also, Aak = ak−1, ak(0) = 0 when k 6= 0, and a0 = 1. So:

• a0(x) = 1

• a1(x) = (x− 1) + 1

I’m writing this in a slightly weird way. Think of it as me doing A backwards, by
integrating a0 and then shifting it. We have Aa1 = a0. The 1 is to ensure that
a1(0) = 0.

• a2(x) =
(x− 2)2

2
+ (x− 2)

It’s easy to check that Aa2 = a1. We have a2(0) = 4
2 − 2 = 0.

• a3(x) =
(x− 3)3

3!
+

(x− 3)2

2!

We check that a3(0) = −27
6 + 9

2 = 0
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Generalizing the pattern, we have:

ak(x) =
(x− k)k

k!
+

(x− k)k−1

(k − 1)!

(except for k = 0, where ak = 1). The three conditions for ak are satisfied, as you can
check.

Now, all we need to do is compute a′k(0):

a′k(x) =
(x− k)k−1

(k − 1)!
+

(x− k)k−2

(k − 2)!

=

(
(x− k)k−2

(k − 1)!

)
((x− k) + (k − 1))

=

(
(x− k)k−2

(k − 1)!

)
(x− 1)

a′k(0) =
(−k)k−2

(k − 1)!
(−1)

=
(−k)k−2

(k − 1)!

(−k)

k

=
(−k)k−1

k!

(except for k = 0, where a′k(0) = 0).
That means that, by our above result:

D =

∞∑
k=1

(−k)k−1

k!
Ak

and, thus:

W (x) =
∞∑
k=1

(−k)k−1

k!
xk

And we are done.
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