Lambert W's Taylor Series

Akiva

The Lambert W function is defined as the inverse of $x e^{x}$. That is:

$$
y=W(x) \Longleftrightarrow x=y e^{y}
$$

It turns out that this has a nice Taylor series:

$$
W(x)=\sum_{k=1}^{\infty} \frac{(-k)^{k-1}}{k!} x^{k}
$$

We will derive this, and we'll take a slightly unusual path to get there.
Taylor's theorem is:

$$
f(x)=\sum_{k=0}^{\infty} f^{(k)}(a) \frac{(x-a)^{k}}{k!}
$$

I could use this theorem directly on $W(x)$, but that involves differentiating $W(x)$ a bunch of times and seeing if I can find a pattern. That's really messy. I'll use a more interesting approach.

In fact, I'll only need to use this theorem on polynomials. This avoids issues of convergence; for polynomials, the Taylor series is really a finite sum, because if k is large enough, then $f^{(k)}=0$. (Also, Taylor's theorem is much easier to prove for polynomials than for general functions.)

Let's make a useful change of notation. Instead of writing f^{\prime} for the derivative of f, let's write $D f$. (Here, D is an operator - it turns a function into a function.) Additionally, $\frac{x^{k}}{k!}$ is such an important polynomial that I'll give it a special name: $d_{k}(x):=\frac{x^{k}}{k!}$. Note that:

- $D d_{k}=d_{k-1}$
- $d_{k}(0)=0($ when $k \neq 0)$
- $d_{0}=1$
d_{k} is called the basic sequence of D.
Our revised Taylor series looks like:

$$
f(x)=\sum_{k=0}^{\infty}\left(D^{k} f\right)(a) d_{k}(x-a)
$$

We can add together operators. For example, $D+D^{2}$ is the operator such that $(D+$ $\left.D^{2}\right) f=f^{\prime}+f^{\prime \prime} . I$ is the identity operator, i.e., that $I f=f$ for every function f. We have $D^{0}=I$.

In addition, we can do weird things such as find $e^{D}-$ since $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$, we can define e^{D} to mean $\sum_{k=0}^{\infty} \frac{D^{k}}{k!}$.

Define the operator E as follows: $(E f)(x)=f(x+1)$. That is, E shifts f over one. More generally, $\left(E^{a} f\right)(x)=f(x+a)$. A nice fact is that $D E=E D$ (that is, they commute). We will now prove that $E=e^{D}$.

Start with the Taylor series, and substitute $x \mapsto x+1$ and $a \mapsto x$:

$$
\begin{aligned}
f(x+1) & =\sum_{k=0}^{\infty}\left(D^{k} f\right)(x) d_{k}(x+1-x) \\
f(x+1) & =\sum_{k=0}^{\infty}\left(D^{k} f\right)(x) d_{k}(1) \\
(E f)(x) & =\sum_{k=0}^{\infty} \frac{\left(D^{k} f\right)(x)}{k!} \\
E & =\sum_{k=0}^{\infty} \frac{D^{k}}{k!} \\
E & =e^{D}
\end{aligned}
$$

Define the Abel operator $A:=D E$. That is, $(A f)(x)=f^{\prime}(x+1)$. By the above theorem, $A=D e^{D}$. We have A written in terms of D. Can we express D in terms of A ? That is, can we find the coefficients c_{k} of the series:

$$
D=\sum_{k=0}^{\infty} c_{k} A^{k}
$$

And this is where this ties into the Lambert W function. Since $W(x)$ is the inverse of $x e^{x}$, and $A=D e^{D}$, we have $D=W(A)$. That means the same coefficients c_{k} will be the coefficients of the series for $W(x)$.

This is a variant of Taylor's theorem, and is equally true:

$$
f(x)=\sum_{k=0}^{\infty}\left(A^{k} f\right)(a) a_{k}(x-a)
$$

where a_{k} is the basic sequence for A - that is, $A a_{k}=a_{k-1}, a_{k}(0)=0$ when $k \neq 0$, and $a_{0}=1$. We will figure out what the a_{k} are later. Basically, this is the Taylor sequence with all of the $D \mathrm{~s}$ replaced by $A \mathrm{~s}$. Again, f only needs to be a polynomial. (The proof of this is similar to how you'd prove Taylor's theorem for polynomials.)

Differentiating:

$$
(D f)(x)=\sum_{k=0}^{\infty}\left(A^{k} f\right)(a) a_{k}^{\prime}(x-a)
$$

Set $a=x$:

$$
\begin{aligned}
(D f)(x) & =\sum_{k=0}^{\infty}\left(A^{k} f\right)(x) a_{k}^{\prime}(0) \\
(D f)(x) & =\sum_{k=0}^{\infty} a_{k}^{\prime}(0)\left(A^{k} f\right)(x) \\
D & =\sum_{k=0}^{\infty} a_{k}^{\prime}(0) A^{k}
\end{aligned}
$$

This means that the coefficients of the Lambert W function are precisely $a_{k}^{\prime}(0)$, where a_{k} is the basic sequence of A !

So, what are the a_{k} ? Let's list the first few and see if we find a pattern. Remember that $A=D E$. Also, $A a_{k}=a_{k-1}, a_{k}(0)=0$ when $k \neq 0$, and $a_{0}=1$. So:

- $a_{0}(x)=1$
- $a_{1}(x)=(x-1)+1$

I'm writing this in a slightly weird way. Think of it as me doing A backwards, by integrating a_{0} and then shifting it. We have $A a_{1}=a_{0}$. The 1 is to ensure that $a_{1}(0)=0$.

- $a_{2}(x)=\frac{(x-2)^{2}}{2}+(x-2)$

It's easy to check that $A a_{2}=a_{1}$. We have $a_{2}(0)=\frac{4}{2}-2=0$.

- $a_{3}(x)=\frac{(x-3)^{3}}{3!}+\frac{(x-3)^{2}}{2!}$

We check that $a_{3}(0)=-\frac{27}{6}+\frac{9}{2}=0$

Generalizing the pattern, we have:

$$
a_{k}(x)=\frac{(x-k)^{k}}{k!}+\frac{(x-k)^{k-1}}{(k-1)!}
$$

(except for $k=0$, where $a_{k}=1$). The three conditions for a_{k} are satisfied, as you can check.

Now, all we need to do is compute $a_{k}^{\prime}(0)$:

$$
\begin{aligned}
a_{k}^{\prime}(x) & =\frac{(x-k)^{k-1}}{(k-1)!}+\frac{(x-k)^{k-2}}{(k-2)!} \\
& =\left(\frac{(x-k)^{k-2}}{(k-1)!}\right)((x-k)+(k-1)) \\
& =\left(\frac{(x-k)^{k-2}}{(k-1)!}\right)(x-1) \\
a_{k}^{\prime}(0) & =\frac{(-k)^{k-2}}{(k-1)!}(-1) \\
& =\frac{(-k)^{k-2}}{(k-1)!} \frac{(-k)}{k} \\
& =\frac{(-k)^{k-1}}{k!}
\end{aligned}
$$

(except for $k=0$, where $a_{k}^{\prime}(0)=0$).
That means that, by our above result:

$$
D=\sum_{k=1}^{\infty} \frac{(-k)^{k-1}}{k!} A^{k}
$$

and, thus:

$$
W(x)=\sum_{k=1}^{\infty} \frac{(-k)^{k-1}}{k!} x^{k}
$$

And we are done.

