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Given a column vector x ∈ Rn, its Discrete Hartley Transform (DHT) is defined as another vector
y ∈ Rn such that

yj =
1
√
n

n−1∑
i=0
xi cas

(
2π
n ij

)
for j ∈ { 0, · · · , n − 1 } (1)

where the cas function is defined as cas θ = cos θ + sin θ. Interestingly, the DHT is an involution; that is,
the DHT is the same as the inverse DHT.

xi =
1
√
n

n−1∑
j=0
yj cas

(
2π
n ij

)
for i ∈ { 0, · · · , n − 1 } (2)

This paper proves the DHT is indeed an involution.

Target Equality To simplify (1) and (2), define an n × n symmetric matrix H whose (i, j)-entry is
1√
n cas

(
2π
n ij

)
. Then the DHT and the inverse DHT are

y = Hx and x = Hy

where x =
[
x0, · · · , xn−1

]ᵀ
and y =

[
y0, · · · , yn−1

]ᵀ
. Thenproving the involutory property of theDHT

reduces to showing thatH2 = I where I is an n×n identitymatrix. This further reduces to showing that
the rows inH are orthogonal; that is,

〈hi, hi′〉 =



1, if i = i′;
0, otherwise;

where hi = 1√
n

[
cas

(
2π
n i0

)
, · · · , cas

(
2π
n i(n − 1)

)]ᵀ
is the ith row inH . It may be written in terms of cas

functions as
n−1∑
j=0

cas
(
2π
n ij

)
cas

(
2π
n i
′j
)
=



n, if i = i′;
0, otherwise;

(3)

which is the target equality for the involutory property.
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CAS Identity The proof of (3) begins with an identity about cas functions.

casα cas β = sin(α + β) + cos(α − β) (4)

Proof of (4). A cas(·) can be simplified to cos(·) as follows:

cas θ = cos θ + sin θ =
√
2
(
1
√
2
cos θ +

1
√
2
sin θ

)
=
√
2 cos

(
θ −

π
4

)
(∗)

Then

casα cas β =
√
2 cos

(
α −

π
4

)
·
√
2 cos

(
β −

π
4

)
by (∗)

= cos
(
α + β −

π
2

)
+ cos(α − β) 2 cos θ cosϕ = cos(θ + ϕ) + cos(θ − ϕ)

= sin(α + β) + cos(α − β) cos
(
θ −

π
2

)
= sin θ

which completes the proof. �

Target Simplified The target equality (3) is decomposed into two summations by (4).

n−1∑
j=0

cas
(
2π
n ij

)
cas

(
2π
n i
′j
)
=

n−1∑
j=0

sin
(
2π
n (i + i′)j

)
+

n−1∑
j=0

cos
(
2π
n (i − i′)j

)
The above will be interpreted as the real and imaginary parts in geometric progressions of complex num-
bers:

n−1∑
j=0

cas
(
2π
n ij

)
cas

(
2π
n i
′j
)
= =




n−1∑
j=0
ω(i+i′)j



+<




n−1∑
j=0
ω(i−i′)j




(5)

where ω is the primitive nth root of unity ω = exp(ι2π/n) = cos(2π/n) + ι sin(2π/n). The identity (5) is
easily proved by the DeMoivre’s identity.

Summation Lemma The last puzzle to the involutory property proof is the summation of a geo-
metric series:

For an integer k,
n−1∑
j=0

(ωk)j =



n, if k is a multiple of n;
0, otherwise.

This lemma ensures that the imaginary part of
∑n−1
j=0 (ωk)j is zero regardless of the integer value k. On the

other hand, the real part is n if k is a multiple of n and zero otherwise. Plugging in theses values to the
RHS of (5) yields the desired identity (3), which completes the involutory property proof.
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