Distance between two hyperplanes

AK

March 14, 2015

What is the distance between two hyperplanes?
A hyperplane is a subspace with dimension $n-1$ (see http://mathworld.wolfram.com/Hyperplane.html). Suppose two parallel hyperplanes are defined as $\left\{x \in \mathbb{R}^{n} \mid(a, x)=b_{1}\right\}$ and $\left\{x \in \mathbb{R}^{n} \mid(a, x)=b_{2}\right\}$ where $a \in \mathbb{R}^{n}$ is the same vector (otherwise they are not parallel and the distance is 0).

Let us consider a line that passes through the origin and is orthogonal to both hyperplanes. This line has a as a direction vector and can be described by a parametrized equation $x=t a, t \in \mathbb{R}$.
It is to find the points x_{1} and x_{2} of intersection with the hyperplanes:

$$
\begin{aligned}
& \left(a, a t_{1}\right)=b_{1} \Longrightarrow t_{1}=\frac{b_{1}}{(a, a)} \Longrightarrow x_{1}=\frac{b_{1} a}{(a, a)} \\
& \left(a, a t_{2}\right)=b_{2} \Longrightarrow t_{2}=\frac{b_{2}}{(a, a)} \Longrightarrow x_{2}=\frac{b_{2} a}{(a, a)}
\end{aligned}
$$

Finally, the distance between points x_{1} and x_{2} can be found:

$$
d=\left\|x_{1}-x_{2}\right\|=\frac{\left|b_{1}-b_{2}\right|\|a\|}{(a, a)}=\frac{\left|b_{1}-b_{2}\right|}{\|a\|}
$$

