
(Counting-Sort Tutorial)

Faiaz Amin Khan
Roll: SH-40 (2nd Year)

Department of Computer Science and Engineering,
University of Dhaka

May 2019

1

Contents

1 Introduction 3

2 Description 3

3 Implementation 5
3.1 Pseudo Code . 5
3.2 Demo Code . 6

4 Complexity Analysis 7

5 Related articles and problems 7

2

1 Introduction

counting sort is a linear time sorting algorithm.It is a sorting technique
based on keys between a specific range. It is done by counting the number
of elements having unique key values . Then doing some arithmetic to
calculate the position of each object in the output sequence.Counting sort
is not a comparison sort rather than integer sort.Like other comparison sort
such as merge sort, it does not compare key value. It just count the
frequency and calculates the position in the sorted list.Counting Sort is very
useful when variation in keys is not significantly greater than the number of
items.It is often used as a subroutine in another sorting algorithm.
Let’s assume that, array A of size N needs to be sorted.

• Initialize the temporary array temp as 0

• Traverse array A and store the count of occurrence of each element in
the appropriate index of the temp array, which means, execute
temp[A[i]]++ for each i , where i ranges from 0 to N-1 .

• Initialize the empty array final

• Place every element in the correct position of final fom temp.

2 Description

At first, find the maximum value in the given array A. Then declare a
counter array temp and count the frequency of each element in the given
array A. After that append each index value of temp to its next index.
Now every value in the temp is indicating the desired position of its index
of the given array A. Finally, take another array final and put all element
in the array by traversing the A.

3

Let us consider the following image

The given array : (A)

1 7 8 6 9 7 2

First Step: (Count the frequency)

0 1 1 0 0 0 1 2 1 1

Second Step:(Append list)

0 1 2 2 2 2 3 5 6 7

Third Step: (Generate output)

Output each object from the input sequence followed by decreasing its

count by 1.

Process the input data: 1,7,8,6,97,2.Position of 1 is 1. Put data 1 at

index 1 in output. Decrease count by one ans so on.

1 2 6 7 7 8 9

Counting Sort Algorithm

It can be seen from the above image that there is an array. For simplicity
the largest element here is 9. At very first step we counted the frequency of
every element in the given .Then we modified the counter array such that
every index value is equal to the sum of its own and its previous index.Now

4

every value is the correct position of its index in sorted list. Output each
object from the input sequence followed by decreasing its count by 1.
Process the input data: 1,7,8,6,9,7,2. Position of 1 is 1. Put data 1 at index
1 in output. Again Position of 7 is 6. Put data 7 at index 6 in output.
Decrease count by 1 to place next data 7 at an index 5 smaller than this
index.

3 Implementation

An implementation of counting sort is given here.

3.1 Pseudo Code

CountingSort(A,n)

//search for maximum element

k= maximum element of A

//A[]-- Initial Array to Sort

//Complexity: O(k)

for i = 0 to k do

c[i] = 0

//Storing Count of each element

//Complexity: O(n)

for j = 0 to n do

c[A[j]] = c[A[j]] + 1

// Change C[i] such that it contains actual

//position of these elements in output array

////Complexity: O(k)

for i = 1 to k do

c[i] = c[i] + c[i-1]

//Build Output array from C[i]

//Complexity: O(n)

for j = n-1 downto 0 do

B[c[A[j]]-1] = A[j]

c[A[j]] = c[A[j]] - 1

end func

5

3.2 Demo Code

A demo code using C++ language is shown here :

#include <bits/stdc++.h>

using namespace std;

void counting_sort(int* A,int len){

int max=*max_element(A,A+len);

int temp[max+1],final[len],i;

for(i=0;i<=max;i++) temp[i]=0;

for(i=0;i<len;i++) temp[A[i]]++;

for(i=1;i<=max;i++){

temp[i]=temp[i]+temp[i-1];

}

for(i=0;i<len;i++){

final[temp[A[i]]-1]=A[i];

temp[A[i]]--;

}

for(i=0;i<len;i++){

A[i]= final[i];

}

}

int main() {

int arr[] = {12, 7, 5, 17, 42, 13};

int arr_size = sizeof(arr)/sizeof(arr[0]);

printf("Given array is \n");

for(int i = 0; i < arr_size; i++)

cout<<arr[i]<<" ";

cout<<endl;

counting_sort(arr, arr_size);

printf("\nSorted array is \n");

for(int i = 0 ; i < arr_size; i++)

cout<<arr[i]<<" ";

cout<<endl;

return 0;

}

6

4 Complexity Analysis

• Time complexity for counting sort for all cases (best, average, worst)
is O(len+ max). As the algorithm traverse through n elements of
array A. It again runs a loop to the maximum element of the given
array

• Space complexity of merge sort using arrays is O(len+max). This is
because two extra array is used in the algorithm.

5 Related articles and problems

• GeeksforGeeks

• Hackerearth

• Wikipedia

• Khan Academy

7

https://www.geeksforgeeks.org/merge-sort/
https://www.hackerearth.com/practice/algorithms/sorting/merge-sort/tutorial/
https://en.wikipedia.org/wiki/Merge_sort
https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort

	Introduction
	Description
	Implementation
	Pseudo Code
	Demo Code

	Complexity Analysis
	Related articles and problems

