CSCI662 HW1: Linear Classifiers

Divya Choudhary
MS in Computer Science at University of Southern California/Los Angeles, CA, US
dchoudhalusc.edu

Abstract

Text classification is one of most common
tasks in the field of natural language process-
ing. It had solution for important practical
problems like spam vs ham classification, in-
formation retrieval and others. The complexity
of text data has been increasing with the con-
stant growth of digital platforms, new lingo,
writing styles etc. This necessitates a much
deeper understanding of both the data and
models in order to be able to classify these
complex text correctly. Selection of the model
to be used for a particular task is the most
trivial and complex task any machine learn-
ing project.This document, Comparative Study
of Linear Text Classifiers provides a compara-
tive study of multiple linear classifiers across
different data sets. The report dives into as-
pects of general Machine Learning algorithm
building steps, feature engineering, nuances of
textual data, model’s data dependence and a
comparison report of results of multiple lin-
ear classifiers. The document report has been
compiled with comparison between 3 models-
Naive Bayes, Perceptron, Logistic Regression.

1 Problem Statement

Text classification is an important field of text min-
ing. In a classical , text classification, a new class
label is predicted and assigned to each piece of
textual data that can be either a document or a
sentence. Any text classification task mostly in-
volves following tasks - data processing, features
extraction, model building & evaluation. There
are 4 varied text data sets - authors, products,
4dim, urdu that need to be classified. For this,
efforts have been made to go slightly beyond the
usual it depends” answer to ”which model to
use for classification?”.There are many state of
the art text classifiers like Decision Trees, SVM,
Random Forest, Perceptron, Naive Bayes, Logis-
tic regression etc. This report is concentrated on

the last three classification models for classifying
the above mentioned data sets. It also gives a
comparative study of performance of models when
they are coded from scratch ’vs’ when they are
used directly from the state of the art libraries like
sklearn. 1t is important to note that the features
have been kept constant for these models for a fair
comparison of the models with a fixed set of fea-
tures.

2 Data Description

There are 4 different data sets namely - "authors’,
‘products’, 4dim’, 'urdu’. Each data set consists
of lines that’s text and label separated by a tab.
Data sets are of varying sizes as shown in plots
below: A brief description of the data:

Figure 1: All data sets used

Products data split

Authors data split

0000

1750 17500 4
1500 15000 {
1250 12500 1

1000 10000 1

Urdu data split 4dim data split

e authors: Short lines of English poetry by
either Emily Bronte (b) or William Shake-
speare (s).# 3665

e products: Very variable length lines of var-
ious kinds of English product reviews that



are either positive(pos) or negative (neg).#
32,592

e 4dim: English reviews of variable length that
are positive or negative and truthful or de-
ceptive (pos.tru,pos.dec, neg.tru, neg.dec).#
1560

e urdu: Urdu BBC news articles either about
Pakistan (pakistan) or the rest of the world
(world).# 220

This paper, for the sake of simplicity, focuses
on just one data -’authors’. Machine Learning
models need to be tested on unseen data to gauge
their true on-field performance. Also, we need a
subset of the data to be used as development set
in order to tune model parameters. So, I divided
each of these data into 3 parts in the 80:10:10 ratio
for training data, development data and test data
respectively.

3 Fetaure Extraxtion

To be able to make sense of the data, all of data sets
are engineered for features. Features are concise
of describing the textual data numerically.

3.1 Data Pre-Processing

Processing of the data to plays a vital role in un-
derstanding the data as well as making the model
more robust. Text data might have erroneous char-
acters or words or sometimes even sentences that
don’t make sense and should be removed from the
data for robustness.For example characters like ’ ’
7, (), 7 etc. can be replace by empty space if
they don’t add any understanding to the corpus.
Removal of stop words from the vocabulary also
helps in catering to the long tail issue of the textual
data. For ’authors’ data set, I looked at the his-

Figure 2: Distribution of words frequencies before pre-
processing in "authors’

500 5001

=4
.
o o como o

togram of words before the pre-processing and it
very clearly had a long tail issue. This is in accor-
dance with the Zipf’s law for the any corpus of nat-
ural language. As a pre-processing step apart from
removal of space, stop-words, punctuation’s etc., |
addressed the long tail issue of the data by remov-
ing top words constituting the top 10 percent of
the entire word frequency. This pre-process step
ensures our classification algorithm is not mis-
guided by the artifacts of the grammar of a partic-
ular language (In general, an English corpus will
see more determiners/pronouns/prepositions than
actual verbs). The post processing data doesn’t
resemble normal distribution exactly but is much
better in avoiding the long tail issue as shown ear-
lier.

Figure 3: Distribution of words frequencies post pre-
processing in ’authors’

3.2 Feature Engineering

Features are extracted from the textual data to cap-
ture the quirks of data set. Data domain expertise
plays a very vital role in the feature identification.
Features should be such that when combined to-
gether should be able to explain the data set well.
The pipeline input consists of raw data set D =
[X1, X2, ...Xn]. We identified a few basic fea-
tures for "authors’ data after processing each X.
Note that in the interest of time, same features have
been used across data sets. These are:

e Length of text
e Count of all words, Count of unique words

e Average word length used, Maximum word
length used

e Uppercase word counts, Title word counts,
Punctuation counts etc

These features are very basic, more advanced
features like POS tags frequency counts, n-gram
based features, term frequency inverse document
frequency(TF-IDF), word or sentence embedding
etc. could result have given even better results.



4 Modeling

To better understand the modeling comparison and
leanings mentioned in below sections, here are a
few assumptions that should be kept in mind:

e Features had been generated only for one data
set "authors’ for one model ’perceptron’. But
same features were used across all data sets
and models(except NB BOW and NB TF-
IDF). It’s not generalised and could lead to
poor accuracy.

e The intent of the exercise was to implement
models from scratch and understand the im-
pact of various features, pre-processing on
the model

e The goal was not to optimize the accuracy of
the model but to understand why is the accu-
racy low and what can be done to boost it,
I have identified enhancements and tried im-
plementing them through pre-built function-
alities of nltk, sklearn etc.

4.1 Perceptron

Perceptron model is a linear classifier that can
learn from its mistakes and also doesn’t have the
feature independence assumption of Naive Bayes.
A perceptron model starts with a random weight
to features and updates its weights based on ev-
ery error in the prediction.Every time, the model
makes a mistake, the weight vector is shifted more
towards the optimal weight vector. There is no
reward if the prediction is right. I implemented
batch update perceptron model. Feature set used
for the model was the same as mentioned above.
With 1200 iterations, I got an accuracy of 81.3%
on ’authors’ data. I used the same feature set to
generate the score of ’sklearn Perceptron” model-
78.2%. This clearly indicates that my Percep-
tron model implementation is at par or even better
with the sklearn’s implemenation. This is because
sklearn has auto assigned the maximum number of
iterations to 1000 giving accuracy of 78.2% while
I got an accuracy of 81.3% for number of itera-
tions for batch update being 1200. Although, this
accuracy is test accuracy but this might be overfit-
ting the data given the dimension of training data is
just 2968. It was observed that if we set the num-
ber of iterations to be really low or really high, the
test accuracy of the model goes down because of
the problem of underfitting and overfitting respec-
tively(the highest accuracy is in the middle, as can

be seen in Fig 4). Data is underfitted with Percep-

Figure 4: Change in test accuracy with number of iter-
ations used for ’authors’ data

0.825

0.800

0.775

0.750

0.725

test accuracy

0.700

0.675

0.650

0.625

500 1000 1500 2000 2500 3000
number of iterations for batch update

tron for number of iterations less than 300. Test
accuracy gradually increases initially, shoots up to
82% and then again recedes with increase in num-
ber of iterations. It’s clear from the plot that the
stable range of test accuracy lies around 76% and
should be preferred to avoid overfitting or under-
fitting issues. As the Perceptron model is able to
fit the data really well, "authors’ data must be lin-
early separable to a large extent.Future work on
perceptron: study the difference in the linear sep-
arability of data sets.

4.2 Naive Bayes

I implemented the Naive Bayes model first with a
few basic features that I finalised above for ’au-
thors’ data set. First approach: I used a version
of the algorithm that supports numeric attributes
and assumes the values of each numerical attribute
are normally distributed. This is a strong assump-
tion, but I wanted to check the result. I calcu-
lated summary stats(mean and standard deviation)
of each numerical feature by class values.We can
use a Gaussian function to estimate the probabil-
ity of a given attribute value for a class, given
the known mean and standard deviation for the at-
tribute estimated from the training data.Now that
we can calculate the probability of an attribute be-
longing to a class, we can combine the probabili-
ties of all of the attribute values for a data instance
and come up with a probability of the entire data
instance belonging to the class. And the class that
has the highest probability for the given data point
is actual prediction.This of course, gave me a poor
accuracy of 53% on the validation set. Running
’MultinomialNB’ model from sklearn,the accu-
racy was 59.8% with the same feature set as used



for my hand-coded model. This slight difference
was expected given the lack of efficient processing
in my model creation.So, overall my hand coded
model was working fairly good when compared
to sklearn model with same features. Second ap-
proach: Next, I tried Bag of Words approach to
be able to classify the data.In bag of words, a
sentence is considered to be made of words and
the probability of sentence given a class is given
as product of probability of each word given the
class. This is fit into the Bayes rule to get the
most probable class for a given set of words form-
ing a sentence.l am using ’add 1’ smoothing to
handle for unseen words in the data. The accu-
racy obtained with this model was 56.5%. The
poor performance with the Bag of Words model is
majorly contributed by poor pre-processing of the
data. After investigating into the incorrect classifi-
cations I have found out following problems that
needed to be improved:

e there are multiple phrases connected by ’-’
and characters other than * * which could not
be split into words during pre-processing

e the removal of just the top 10% of words
from the corpus is not completely handling
the long tail problem

e counting just the frequency of occurrence of
words has the problem of not generalizing
importance of the word for the sentence. A
more frequent word occurring across sen-
tences should have lower weight in identify-
ing a specific sentence

e Naive Bayes model works better for large
data sets like "products’ where it can learn
variations

Third approach: Next, I wanted to use better
processing of the data. This can be very easily
achieved functionalities of NLTK library like to-
kenizer’. Words with very high frequencies were
messing with the prediction although they were
not the unique identifier of the sentence. So, I
also wanted to incorporate the concept of weight
to words in identifying a sentence based on Term
Frequency and Inverse Document Frequency(TF-
IDF). The document in our case actually repre-
sents sentences./ have implemented TF-IDF Naive
Bayes model too. But the problem was the train-
ing computational considerations, my TF-IDF im-
plementation considered only top 200 words for

the most frequent vocabulary which is not reflec-
tive of the actual scenario and hence accuracy is
low. In order to quickly check this hypothesis, I
used the ’sklearn” module to implement this con-
sidering all words for the TF-IDF and the accuracy
achieved was 82.6%.

4.3 Logistic Regression

Unlike Perceptron, Logistic regression updates the
weight vector of features using probability. There
are many possible hyper-planes that can sepa-
rate data and perceptron stops when it finds any
of these hyper-planes. The hyper-plane found
by perceptron might not be the optimal hyper-
plane. That’s why Logistic Regression is preferred
since it gives the most optimal hyper-plane sepa-
rating the data. Logistic regression minimizes the
logistic loss. It updates the weight with every pre-
diction in terms of reward or punishment. I im-
plemented the logistic regression model using the
same set of features as created for "authors’ for
Perceptron model. The accuracy of my logistic re-
gression model was 74.8% with number of iter-
ations for batch update being 1500. I compared
it with the accuracy obtained my implementing
sklearn’s ’LogisticRegression” which was 78.2%
with the same feature set and number of iterations.
The loss is really high in the beginning of the iter-

Figure 5: Change in test accuracy with number of iter-
ations in Logistic Regression used for "authors’ data

0.775

0.750

0.725

0.700

0675

test accuracy

0.650

0625

0.600

500 1000 1500 2000 2500 3000
number of iterations for batch update of Logistic Regression

ation and gradually decreases with the progress in
the epoch and then stabilises towards the end of the
epoch. Similar to perceptron, the accuracy is low
with the lower number of epochs, increases with
increase in epochs. As the number of epochs go
beyond the size of the data itself, it’s highly over-
fitted and the accuracy is not entirely trustworthy.



