An Initial Analysis of Approximation Error for Evolutionary
Algorithms

Jun He 1

Yuren Zhou 2

Guangming Li 3

rﬁl'ty, UK _2Sun Yat-sen University, China 3Shenzhen Institute of Information Technology, China

3 s [ - g
N 2 1
.-i.a 4 I. w1 i I_Ii'. g b

- i I-u_:' -._'“.I- R - -
i i .'-._. ) l'.l‘i..-.-..ilj_.'l_ - i

July 26, 2017

R, !ul-l s .
o -:_.._.1.-._ - ""_".."“::_I"-; '... i _I'
Motivation

This work aims at rigorously analyzing the approximation error of
evolutionary algorithms (EAs).

Background
Consider an EA for solving a maximization problem:

max f(x), subject to x € S.

(1)

Let f,,.x denote the fitness of the optimal solution and F; the expected
fitness of the best solution found in the tth generation.

@ The approximation error of the EA in the tth generation is

Et = fmax — Ft° (2)
e If some positive constants v and [ exist with
E
im ——— =4 (3)

t——+00 (Et—l)a

then {E;t =0,1,---} is called to converge to 0 in the order
«, with asymptotic error constant |1, 2].

Research Questions

O Order o =7
@ Asymptotic error constant 5 =7

An experimental study

EA-I: (1 + 1) EA using onebit mutation and elitist selection
EA-II: (1 4+ 1) EA using bitwise mutation and elitist selection

f(x): OneMax function
a:set to 1
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Figure: For EA-l and Il, E;/E;_1 converge to some (3 but stochastic disturbance
exists on EA-II.

Analysis Tool
The analysis tool is Markov chain theory |3, 4].
- | Label all populations by indexes {0, 1,---, L} where indexes are sorted
o according to the fitness value of populations from high to low:

i fmax:ﬁ)>f12"'2fL:fmina

k1 rR2 133 -+ n31—-1 131

\fL,l rp2 rps -«

e Vector qq := (Pr(1),Pr(2),--- ,Pr(L))" represent the probability
distribution of the initial population over the set {1,---  L}.

rLi-1 rLL )

Suppose that EAs can be modelled by homogeneous Markov chains and
are convergent (approximation error £, — 0 when t — 400).

(4)

e where f; denotes the fitness of the best individual in the /-th population. | |
e r; j denotes the transition probability of an EA from j to 1.
- e Matrix R denotes transition probabilities within the set {1,--- , L}.
T (rl,l no n3 - - nir-1 f1,L\
-.m' N1 My h3- " Ni-1Nni
R := (5)

’ Main Theoretical Result
Ty HE In many cases, the order of convergence o = 1

.~ @ Asymptotic error constant equals to the spectral radius: 8 = p(R).
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General EAs
Under the particular initialization, that is, set qg = v/|v| where v is an

eigenvector corresponding to the eigenvalue p(R) [4].

Theorem 1
Let R be the transition submatrix with p(R) < 1. Under particular

initialization , it holds for all t > 1,
E.
Ee1

That is a = 1 and 8 = p(R).

p(R). (6)

EAs with Primitive Transition Matrices
Case 1: transition matrix R is primitive.

Primitive matrix
A matrix R is called primitive if there exists a positive integer m

such that R™ > O.
This condition means that starting for any state 7, an EA can reach

any other state j in m generations.

Under random initialization, that is, the initial population can be chosen
to be any non-optimal state with a positive probability. Equivalently,
qo > 0.

Theorem 2
If R is primitive, then under random initialization, it holds

lim E p(R).

That is « = 1 and 8 = p(R).

EAs with Reducible Transition Matrices
Case 2: transition matrix R is reducible.

Definition
R is reducible if it can be split as

~ (Ru1 Rp
= (5 R

where O is a zero-value submatrix.

Consider a special reducible transition matrix R that is an upper
triangular matrix:

(rl,l n2 n3--- nir-1 f1,L\
0 nayn3 - ni_1 h

R = 0 0 I’3’3 s r3,L_1 I’37L (9)
\ 0 0 0 0 rLyL)

Theorem 3
If R 1s upper triangular with unique diagonal entry r; ;, then under

random initialization, it holds

' =
Im

That is « = 1 and 8 = p(R).

(10)
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